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We establish strong laws of large numbers and central limit theorems for the regret of two of the most popular

bandit algorithms: Thompson sampling and UCB. Here, our characterizations of the regret distribution

complement the characterizations of the tail of the regret distribution recently developed in Fan and Glynn

(2021b). The tail characterizations there are associated with atypical bandit behavior on trajectories where

the optimal arm mean is under-estimated, leading to mis-identification of the optimal arm and large regret.

In contrast, our SLLN’s and CLT’s here describe the typical behavior and fluctuation of regret on trajectories

where the optimal arm mean is properly estimated. We find that Thompson sampling and UCB satisfy the

same SLLN and CLT, with the asymptotics of both the SLLN and the (mean) centering sequence in the

CLT matching the asymptotics of expected regret. Both the mean and variance in the CLT grow at log(T )

rates with the time horizon T . Asymptotically as T → ∞, the variability in the number of plays of each

sub-optimal arm depends only on the rewards received for that arm, which indicates that each sub-optimal

arm contributes independently to the overall CLT variance.
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1. Introduction

The multi-armed bandit (MAB) problem has become an extremely fruitful area of both research

and practice in recent decades. Along with the widespread deployment of bandit algorithms in

numerous diverse electronic applications, there has been a great deal of effort to better understand

the performance of empirically successful algorithms from a theoretical perspective. This literature,

by now vast, is almost entirely focused on algorithm design principles which produce small regret

in expectation. Here, small means that expected regret grows as a constant multiple of log(T ) with

the time horizon T , as motivated by the Lai-Robbins lower bound (Lai and Robbins 1985) which

characterizes the minimum possible log(T ) rate.

However, as highlighted by the recent work of Fan and Glynn (2021b), it is important to consider

other aspects of the regret distribution besides just the expected regret in bandit algorithm design.

It is shown there that focusing purely on expected regret minimization comes with several highly

undesirable side effects. First, algorithms with small or minimal rates of expected regret growth,

including the most popular ones based on the Thompson sampling (TS) (Thompson 1933) and

upper confidence bound (UCB) (Lai and Robbins 1985, Auer et al. 2002) strategies, must have

regret distributions with heavy (power law) tails. These tails are essentially that of a truncated

Cauchy distribution, implying that there is a quite large probability of suffering very large regret.

Second, expected regret minimization provides no control over the growth rate of higher moments of

expected regret, and notably there is no control over the variability of regret. Third, the truncated

Cauchy tails cause an algorithm to suffer large expected regret (growing as T a for some 0<a< 1)

when the bandit environment is just slightly mis-specified relative to the algorithm’s design.

In this paper, we develop approximations to the regret distribution that complement those of

Fan and Glynn (2021b). For fixed bandit environments, we show that as the time horizon T →∞,

the regret of TS and UCB satisfy strong laws of large numbers (SLLN’s) and central limit theorems

(CLT’s). (For simplicity, we consider versions of TS and UCB designed for Gaussian rewards.)

In fact, these limit theorems for TS and UCB are the same, with the asymptotics of both the

SLLN and the (mean) centering sequence in the CLT matching the asymptotics of expected regret.

Complementary to the characterizations of the regret distribution tail in Fan and Glynn (2021b),

the CLT’s here describe the concentration and shape of the main probability mass of the regret

distribution, centered around the expected regret. The tail characterizations in Fan and Glynn

(2021b) are obtained through changes of measure associated with trajectories where the optimal

arm mean is under-estimated, thereby causing the optimal arm to be mis-identified and resulting

in large regret. Here, our SLLN’s and CLT’s are implicitly associated with trajectories where the
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mean of the optimal arm is properly estimated and the optimal arm is correctly identified. In

this sense, the tail of the regret distribution describes the atypical behavior of regret, whereas the

SLLN’s and CLT’s describe the typical behavior and fluctuation of regret.

Some additional highlights of our results are as follows. Both the means and variances in our

CLT’s grow at log(T ) rates with T . By analogy with the large deviations theory for sums of iid

random variables, this suggests that large deviations of regret correspond to deviations from the

expected regret that are of order log(T ). (Fan and Glynn (2021b) characterize the tail of the

regret distribution beyond log1+ϵ(T ) for small ϵ > 0. Future work will analyze deviations on the

log(T ) scale.) The variability in our CLT’s is purely due to the variability of the sub-optimal arm

rewards. Asymptotically as T →∞, the number of plays of each sub-optimal arm depends only

on the rewards received for that arm. So the numbers of plays of different sub-optimal arms are

asymptotically independent and contribute additively to the overall CLT variance. Lastly, we find

that the CLT becomes a better approximation to the regret distribution as the regret distribution

tail is made lighter by increasing the amount of exploration performed by the algorithm. (See

Section 5 of Fan and Glynn (2021b) for a sharp trade-off between the amount of exploration

performed by UCB-type algorithms and the resulting heaviness of the regret tail.)

In terms of related work, Wager and Xu (2021) and Fan and Glynn (2021a) develop diffusion

approximations for the regret of TS and related algorithms, and Kalvit and Zeevi (2021) develop

diffusion approximations for the regret of UCB. The approximations of the regret distribution in

these works are developed for bandit settings where the gaps between the arm means are roughly

of size 1/
√
T for time horizon T . So these distributional approximations are distinct from those

in this paper, which are developed for bandit settings with fixed gaps between arm means as

T →∞. In Cowan and Katehakis (2019), SLLN’s and laws of the iterated logarithm (LIL’s) are

developed for a version of UCB and also for algorithms based on forced arm sampling according to

a predefined schedule. (Our SLLN for UCB is adapted from that of Cowan and Katehakis (2019),

but our SLLN’s for TS and our CLT’s for both UCB and TS are new.)

The rest of the paper is structured as follows. In Section 1.1, we provide a formal framework

for the MAB problem and introduce notation. In Section 2, we develop SLLN’s (Theorems 1 and

3) and CLT’s (Theorems 2 and 4) for the regret of TS in two- and multi-armed settings. Then, in

Section 3, we develop a SLLN (Theorem 5) and CLT’s (Theorems 6 and 7) for the regret of UCB in

two- and multi-armed settings. In Sections 2 and 3, we work with versions of TS and UCB designed

for environments with iid Gaussian rewards with variance 1 (for simplicity), and we analyze their

regret behavior when they operate in such environments (i.e., in well-specified settings). Later, in

Section 4, we develop SLLN’s and CLT’s (Propositions 1 and 2) for the regret of TS and UCB in

possibly mis-specified settings. In such settings, we work with versions of TS and UCB designed
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for iid Gaussian rewards with a specified variance σ2 > 0, but we analyze their regret behavior in

environments with essentially arbitrary reward distributions. (In these mis-specified settings, we

still assume that the rewards are iid for simplicity, but our technical arguments can be adapted

to accommodate rewards evolving as stochastic processes.) Finally, we examine the validity of the

CLT’s over finite time horizons through numerical simulations in Section 5.

1.1. Model and Preliminaries

A K-armed MAB evolves within a bandit environment ν = (P1, . . . , PK), where each Pk is a dis-

tribution on R. At time t, the decision-maker selects an arm A(t)∈ [K] := {1, . . . ,K} to play. The

conditional distribution of A(t) given A(1), Y (1), . . . ,A(t−1), Y (t−1) is πt(· |A(1), Y (1), . . . ,A(t−
1), Y (t−1)), where π= (πt, t≥ 1) is a sequence of probability kernels, which constitutes the bandit

algorithm (with πt defined on ([K]×R)t× 2[K]). Upon selecting the arm A(t), a reward Y (t) from

arm A(t) is received as feedback. The conditional distribution of Y (t) given A(1), Y (1), . . . ,A(t−
1), Y (t− 1),A(t) is PA(t)(·). We write Xk(t) to denote the reward received when arm k is played

for the t-th instance, so that Y (t) =XA(t)(NA(t)(t)), where Nk(t) =
∑t

i=1 I (A(i) = k) denotes the

number of plays of arm k up to and including time t. For each arm k, corresponding to Nk(t), we

use Tk(j) to denote the time of the j-th play of arm k, and we use

τk(j) = Tk(j+1)−Tk(j)

to denote the time in between the j-th and (j +1)-th plays of arm k. At time t, the filtration for

the bandit algorithms studied in this paper is given by

Ft = {A(1), . . . ,A(t), Xk(1), . . . ,Xk(Nk(t)), 1≤ k≤K}.

For any time n, the interaction between the algorithm π and the environment ν induces a unique

probability Pνπ(·) on ([K]×R)∞ for which

Pνπ(A(1) = a1, Y (1)∈ dy1, . . . ,A(n) = an, Y (n)∈ dyn) =
n∏

t=1

πt(at | a1, y1, . . . , at−1, yt−1)Pat(dyt).

Throughout the paper, all expectations and probabilities will be taken with respect to Pνπ(·). The
particular environment ν and algorithm π under consideration will be clear from the context, and

we will not write it explicitly.

The performance of an algorithm π is measured by the (pseudo-)regret (at time t):

R(t) =
∑
k ̸=k∗

Nk(t)∆k,

where ∆k = µk∗ − µk, k
∗ is the optimal arm, and for any arm k′, µk′ is the mean of its reward

distribution. (We will always assume the optimal arm is unique for technical simplicity.) The goal

in most settings is to find an algorithm π which minimizes the expected regret E[R(t)] as t→∞.
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2. Analysis of Thompson Sampling

In this section, we analyze a version of TS that is designed for iid Gaussian rewards with variance 1.

We assume that the actual arm rewards are also iid Gaussian with variance 1, i.e., TS is operating

in a well-specified environment. For modifications and consideration of model mis-specification, see

Section 4.

Asymptotically, the prior on the arm means used in TS does not matter, so we put a N(0,1)

prior on all arm means for simplicity. Given Ft (the information collected up to and including time

t), at time t+1 TS generates one sample from the posterior distribution of the mean for each arm,

and then plays the arm with the highest sampled mean. This can be implemented by generating

exogenous N(0,1) random variables Zk(t+1) for each arm k, and then playing the arm:

A(t+1)= argmax
k∈[K]

{
µ̂k(Nk(t))+

Zk(t+1)√
1+Nk(t)

}
,

where µ̂k(n) =
1

1+n

∑n

j=1Xk(j). As shown in Korda et al. (2013), the expected regret for well-

specified Gaussian TS satisfies:

lim
T→∞

E[R(T )]

log(T )
=
∑
k ̸=k∗

2

∆k

. (1)

(A Jeffrey’s prior is used in Korda et al. (2013) to derive a more general result that applies to any

exponential family reward distribution.)

To develop our SLLN’s and CLT’s, we analyze the times (Tk(j), j ≥ 1) during which each sub-

optimal arm k is played. TS does not stop playing sub-optimal arms for any time horizon, and each

sub-optimal arm is played roughly O(log(T )) times by time T . Thus, the spacing between the Tk(j)

should increase exponentially with j. The log(Tk(j)) should then be on a linear scale and satisfy

SLLN’s and CLT’s. Using the basic identities from renewal theory, we can obtain corresponding

limit theorems for the Nk(T ).

To analyze the Tk(j), we consider probabilities of playing sub-optimal arms, as well as approxi-

mations to such probabilities. For each sub-optimal arm k, define:

pk(Nk(t), t+1)= P

(
µ̂k(Nk(t))+

Zk(t+1)√
1+Nk(t)

> µ̂k∗(Nk∗(t))+
Zk∗(t+1)√
1+Nk∗(t)

∣∣∣∣Ft

)

= P
(
Vk(t+1)<Bk(Nk(t), t+1)

∣∣∣∣Ft

)
, (2)

where the Vk(t+1)= 1−Φ(Zk(t+1)) are distributed according to Unif(0,1), and we define

Bk(Nk(t), t+1)= 1−Φ

(√
1+Nk(t)

(
µ̂k∗(Nk∗(t))− µ̂k(Nk(t))+

Zk∗(t+1)√
1+Nk∗(t)

))
. (3)
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We use a coupling setup involving the randomization variables Vk(t+1) for each sub-optimal arm

k. For each such k, and each j ≥ 1, let (ξk(j, i), i ≥ 1) be an independent exogenous sequence of

Unif(0,1) random variables such that

ξk(j, i) = Vk(Tk(j)+ i), 1≤ i≤Tk(j+1)−Tk(j). (4)

To obtain SLLN’s, we use the following approximations to the pk and τk:

p̃k(j) = exp

(
−j

∆2
k

2

)
(5)

τ̃k(j) = inf{i≥ 1 : ξk(j, i)< p̃k(j)}. (6)

To obtain CLT’s, we use the approximations:

p̂k(j) =
1√

πj(µk∗ − µ̂k(j))2
exp

(
−1

2
j(µk∗ − µ̂k(j))

2

)
(7)

τ̂k(j) = inf{i≥ 1 : ξk(j, i)< p̂k(j)}. (8)

2.1. Strong Law of Large Numbers

We first show that the regret of TS satisfies a SLLN in two-armed settings. The limit in the

SLLN matches that of expected regret in (1). Using the coupling setup involving the exogenous

Unif(0,1) random variables ξk(j, i) satisfying (4), we are able to define a simpler process involving

the quantities p̃k and τ̃k (approximations to pk and τk) defined in (5) and (6). This simpler process

approximates the dynamics of TS sufficiently well to yield a SLLN.

Theorem 1. In two-armed bandit environments with arm mean gap ∆> 0, the regret of TS sat-

isfies the SLLN:

R(T )

log(T )
a.s.→ 2

∆
. (9)

Proof of Theorem 1. Without loss of generality, let arm 2 be the sub-optimal arm. With p̃2(j)

and τ̃2(j) as defined in (5) and (6), note that

log

(
n∑

j=1

τ̃2(j)

)
= log

(
n∑

j=1

exp

(
j
∆2

2

2
+ log(τ̃2(j)p̃2(j))

))

≤ max
1≤j≤n

{
j
∆2

2

2
+ log(τ̃2(j)p̃2(j))

}
+ log(n)

≤ n
∆2

2

2
+ max

1≤j≤n
log(τ̃2(j)p̃2(j))+ log(n), (10)

where the first inequality is due Lemma 8. Similarly,

log

(
n∑

j=1

τ̃2(j)

)
≥ max

1≤j≤n

{
j
∆2

2

2
+ log(τ̃2(j)p̃2(j))

}
≥ n

∆2
2

2
+ log(τ̃2(n)p̃2(n)). (11)



7

Using Lemma 9,

max1≤j≤n log(τ̃2(j)p̃2(j))

n
a.s.→ 0. (12)

Then, (10)-(12) together yield

log
(∑n

j=1 τ̃2(j)
)

n
a.s.→ ∆2

2

2
.

So, the key to obtaining a SLLN for N2(t) is to establish that

log
(∑n

j=1 τ2(j)
)

n
−

log
(∑n

j=1 τ̃2(j)
)

n
a.s.→ 0.

We establish this in Lemma 1. Then, (9) is established by the renewal theory relation:

log
(∑N2(t)

j=1 τ2(j)
)

N2(t)
≤ log(t)

N2(t)
≤

log
(∑N2(t)+1

j=1 τ2(j)
)

N2(t)+ 1

N2(t)+ 1

N2(t)

□

Lemma 1. Using TS in two-armed bandit environments in which arm 2 is sub-optimal,

log
(∑n

j=1 τ2(j)
)

n
−

log
(∑n

j=1 τ̃2(j)
)

n
a.s.→ 0 (13)

Proof of Lemma 1. Let ϵ∈ (0,
∆2

2
2
) and define

p̃+
2 (j) = exp

(
−j

(
∆2

2

2
+ ϵ

))
(14)

τ̃ +
2 (j) = inf

{
i≥ 1 : ξ2(j, i)< p̃+

2 (j)
}

p̃−
2 (j) = 2exp

(
−j

(
∆2

2

2
− ϵ

))
(15)

τ̃ −
2 (j) = inf

{
i≥ 1 : ξ2(j, i)< p̃−

2 (j)
}
.

Since τ̃2(j), τ̃
+
2 (j) and τ̃ −

2 (j) are all defined using a common set of random variables ξ2(j, i), we

have almost surely for all j,

τ̃ −
2 (j)≤ τ̃2(j)≤ τ̃ +

2 (j). (16)

We claim that, almost surely, for sufficiently large j,

τ̃ −
2 (j)≤ τ2(j)≤ τ̃ +

2 (j). (17)

This follows from

p̃+
2 (N2(t))< p2(N2(t), t+1)< p̃−

2 (N2(t)),
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which is established in Lemma 2. Because of (16) and (17), we have, almost surely,

limsup
n→∞

∣∣∣∣∣∣
log
(∑n

j=1 τ2(j)
)

n
−

log
(∑n

j=1 τ̃2(j)
)

n

∣∣∣∣∣∣≤ limsup
n→∞

 log
(∑n

j=1 τ̃
+
2 (j)

)
n

−
log
(∑n

j=1 τ̃
−
2 (j)

)
n

 .

(18)

We now show that the right-hand side of (18) is almost surely negligible. Note that

0≤ log

(
n∑

j=1

τ̃ +
2 (j)

)
− log

(
n∑

j=1

τ̃ −
2 (j)

)

≤ max
1≤j≤n

{
j

(
∆2

2

2
+ ϵ

)
+ log

(
τ̃ +
2 (j)p̃+

2 (j)
)}

+ log(n)− max
1≤j≤n

{
j

(
∆2

2

2
− ϵ

)
+ log

(
2−1τ̃ −

2 (j)p̃−
2 (j)

)}
≤ n

(
∆2

2

2
+ ϵ

)
+ max

1≤j≤n
log
(
τ̃ +
2 (j)p̃+

2 (j)
)
+ log(n)−n

(
∆2

2

2
− ϵ

)
− log

(
τ̃ −
2 (n)p̃−

2 (n)
)
+ log(2),

(19)

where the first inequality holds by the definition of τ̃ +
2 (j) and τ̃ −

2 (j) (see (16)), and the second

inequality is due Lemma 8. Using Lemma 9, we have

max1≤j≤n log
(
τ̃ +
2 (j)p̃+

2 (j)
)

n
a.s.→ 0 (20)

max1≤j≤n log
(
τ̃ −
2 (j)p̃−

2 (j)
)

n
a.s.→ 0. (21)

Putting together (19)-(21),

limsup
n→∞

 log
(∑n

j=1 τ̃
+
2 (j)

)
n

−
log
(∑n

j=1 τ̃
−
2 (j)

)
n

≤ 2ϵ,

and so, together with (18), we have, almost surely,

limsup
n→∞

∣∣∣∣∣∣
log
(∑n

j=1 τ2(j)
)

n
−

log
(∑n

j=1 τ̃2(j)
)

n

∣∣∣∣∣∣≤ 2ϵ.

Sending ϵ ↓ 0 yields (13). □

Lemma 2. Using TS in two-armed bandit environments in which arm 2 is sub-optimal, with p̃+
2

and p̃−
2 as defined in (14) and (15), for sufficiently large t,

p̃+
2 (N2(t))< p2(N2(t), t+1)< p̃−

2 (N2(t)). (22)

Proof of Lemma 2. In (2) and (3), we provide control over the term

B2(N2(t), t+1)= 1−Φ

(√
1+N2(t)

(
µ̂1(N1(t))− µ̂2(N2(t))+

Z1(t+1)√
1+N1(t)

))
.
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By Theorem 1 of May et al. (2012), N2(t)/N1(t)
a.s.→ 0 and N2(t)

a.s.→ ∞. Let ϵ′ > 0. Almost surely,

for t sufficiently large,

|µ̂1(N1(t))− µ̂2(N2(t))−∆2| ≤
ϵ′

2
.

Consider the event

Ct+1 =

{∣∣∣∣∣ Z1(t+1)√
1+N1(t)

∣∣∣∣∣≤ ϵ′

2

}
.

Then almost surely, for t sufficiently large,

1−Φ
(√

N2(t)(∆2 + ϵ′)
)
≤ P (V2(t+1)<B2(N2(t), t+1), Ct+1 | Ft)

≤ P (V2(t+1)<B2(N2(t), t+1) | Ft)
(
= p2(N2(t), t+1)

)
≤ P (V2(t+1)<B2(N2(t), t+1), Ct+1 | Ft)+P

(
Cc

t+1

)
≤ 2

(
1−Φ

(√
N2(t)(∆2 − ϵ′)

))
,

where the last inequality is due to N2(t)/N1(t)
a.s.→ 0, and so P(Cc

t+1) is asymptotically negligible

compared to P (V2(t+1)<B2(N2(t), t+1), Ct+1 | Ft). Then, (22) is established by taking ϵ′ > 0

sufficiently small and applying Lemma 7. □

2.2. Central Limit Theorem

We now show that the regret of TS satisfies a CLT in two-armed settings. The (mean) centering

in the CLT matches the asymptotics of the SLLN in Theorem 1 (and also that of expected regret

in (1)). To prove the CLT, we use an approach similar to that used to prove the SLLN, but we use

a process involving the refined quantities p̂k and τ̂k (approximations to pk and τk) defined in (7)

and (8). It turns out that the variability in the CLT is purely due to the variability of the rewards

of the sub-optimal arm. This is reasonable in light of the fact that the optimal arm is played much

more than the sub-optimal arm, and so its sample mean is much more concentrated around its

true mean.

Theorem 2. In two-armed bandit environments with arm mean gap ∆> 0, the regret of TS sat-

isfies the CLT:

R(T )− 2
∆
log(T )

2
∆

√
2 log(T )

⇒N(0,1). (23)
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Proof of Theorem 2. Without loss of generality, let arm 2 be the sub-optimal arm. With p̂2(j)

and τ̂2(j) as defined in (7) and (8), note that

log

(
n∑

j=1

τ̂2(j)

)
= log

(
n∑

j=1

exp

(
1

2
j(µ1 − µ̂2(j))

2 + log
(√

πj(µ1 − µ̂2(j))2
)
+ log(τ̂2(j)p̂2(j))

))

≤ max
1≤j≤n

{
1

2
j(µ1 − µ̂2(j))

2 + log
(√

πj(µ1 − µ̂2(j))2
)
+ log(τ̂2(j)p̂2(j))

}
+ log(n)

≤ max
1≤j≤n

1

2
j(µ1 − µ̂2(j))

2 + max
1≤j≤n

log
(√

πj(µ1 − µ̂2(j))2
)
+ max

1≤j≤n
log(τ̂2(j)p̂2(j))+ log(n),

(24)

where the first inequality is due to Lemma 8. Similarly,

log

(
n∑

j=1

τ̂2(j)

)
≥ max

1≤j≤n

{
1

2
j(µ1 − µ̂2(j))

2 + log
(√

πj(µ1 − µ̂2(j))2
)
+ log(τ̂2(j)p̂2(j))

}
≥ 1

2
n(µ1 − µ̂2(n))

2 + log
(√

πn(µ1 − µ̂2(n))2
)
+ log(τ̂2(n)p̂2(n)). (25)

Since µ̂2(j)
a.s.→ µ2 by the SLLN, it is straightforward to see that

max1≤j≤n log
(√

πj(µ1 − µ̂2(j))2
)

√
n

a.s.→ 0. (26)

Also, using Lemma 9,

max1≤j≤n log(τ̂2(j)p̂2(j))√
n

a.s.→ 0. (27)

For any j,

1

2
j (µ1 − µ̂2(j))

2
=∆2

j∑
i=1

(
Y2(i)+

∆2

2

)
+

(
1√
2j

j∑
i=1

Y2(i)

)2

, (28)

where Y2(i) =−(X2(i)−µ2) is an independent sequence of N(0,1) random variables. By the LIL,

1√
n

max
1≤j≤n

(log log j)

(
1√

2j log log j

j∑
i=1

Y2(i)

)2

a.s.→ 0. (29)

Using (24) together with (26)-(29), we have for any x∈R,

lim inf
n→∞

P


(
max1≤j≤n∆2

∑j

i=1

(
Y2(i)+

∆2
2

))
−n

∆2
2
2

∆2

√
n

≤ x

≤ lim inf
n→∞

P

 log
(∑n

j=1 τ̂2(j)
)
−n

∆2
2
2

∆2

√
n

≤ x

 .

(30)

Using (25) together with (26)-(29), we have for any x∈R,

limsup
n→∞

P

 log
(∑n

j=1 τ̂2(j)
)
−n

∆2
2
2

∆2

√
n

≤ x

≤ limsup
n→∞

P

(
∆2

∑n

i=1

(
Y2(i)+

∆2
2

)
−n

∆2
2
2

∆2

√
n

≤ x

)
. (31)
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By Theorem 2.12.3 of Gut (2009), the left side of (30) is Φ(x), and by the classical CLT, the right

side of (31) is also Φ(x). So we have shown that

log
(∑n

j=1 τ̂2(j)
)
−n

∆2
2
2

∆2

√
n

⇒N(0,1). (32)

So, the key to obtaining a CLT for N2(t) is to establish that

log
(∑n

j=1 τ2(j)
)

√
n

−
log
(∑n

j=1 τ̂2(j)
)

√
n

P→ 0. (33)

We establish this in Lemma 3. Then we can apply the standard renewal process CLT argument as

follows. Let x∈R, and define h(t) =
⌊
x 2

∆2
2

√
2t+ 2

∆2
2
t
⌋
. Then,

P

 log
(∑h(t)

j=1 τ2(j)
)
−h(t)

∆2
2
2

∆2

√
h(t)

>−x

∼ P

 log
(∑h(t)

j=1 τ2(j)
)
−h(t)

∆2
2
2

∆2

√
h(t)

>
t−h(t)

∆2
2
2

∆2

√
h(t)


= P

(
h(t)∑
j=1

τ2(j)> et

)
= P (N2(e

t)≤ h(t))

= P

N2(e
t)− t 2

∆2
2

2
∆2

2

√
2t

≤ x

 .

Using this together with (32) and (33), (23) is established. □

Lemma 3. Using TS in two-armed bandit environments in which arm 2 is sub-optimal,

log
(∑n

j=1 τ2(j)
)

√
n

−
log
(∑n

j=1 τ̂2(j)
)

√
n

P→ 0. (34)

Proof of Lemma 3. Define

p̂+
2 (j) =

1

5
p̂2(j) (35)

τ̂ +
2 (j) = inf

{
i≥ 1 : ξ2(j, i)< p̃+

2 (j)
}
,

with p̂2(j) as defined in (7). Since τ̂2(j) and τ̂ +
2 (j) are all defined using a common set of random

variables ξ2(j, i), we have almost surely for all j,

τ̂2(j)≤ τ̂ +
2 (j).

We claim that, almost surely, for sufficiently large j,

τ̂2(j)≤ τ2(j)≤ τ̂ +
2 (j). (36)
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This follows from

p̂+
2 (N2(t))< p2(N2(t), t+1)< p̂2(N2(t)),

which is established in Lemma 4.

Because of (36),∣∣∣∣∣∣
log
(∑n

j=1 τ2(j)
)

√
n

−
log
(∑n

j=1 τ̂2(j)
)

√
n

∣∣∣∣∣∣≤
∣∣∣∣∣∣
log
(∑n

j=1 τ̂
+
2 (j)

)
√
n

−
log
(∑n

j=1 τ̂2(j)
)

√
n

∣∣∣∣∣∣+ oa.s.(1). (37)

We now show that (for the right-hand side of (37)),

log
(∑n

j=1 τ̂
+
2 (j)

)
√
n

−
log
(∑n

j=1 τ̂2(j)
)

√
n

P→ 0. (38)

Similar to previous arguments,

0≤ log

(
n∑

j=1

τ̂ +
2 (j)

)
− log

(
n∑

j=1

τ̂2(j)

)

≤ max
1≤j≤n

{
1

2
j(µ1 − µ̂2(j))

2 + log
(
5
√

πj(µ1 − µ̂2(j))2
)
+ log

(
τ̂ +
2 (j)p̂+

2 (j)
)}

+ log(n)

− max
1≤j≤n

{
1

2
j(µ1 − µ̂2(j))

2 + log
(√

πj(µ1 − µ̂2(j))2
)
+ log (τ̂2(j)p̂2(j))

}
≤ max

1≤j≤n

1

2
j(µ1 − µ̂2(j))

2 + max
1≤j≤n

log
(
5
√
πj(µ1 − µ̂2(j))2

)
+ max

1≤j≤n
log
(
τ̂ +
2 (j)p̂+

2 (j)
)
+ log(n)

− 1

2
n(µ1 − µ̂2(n))

2 − log
(√

πn(µ1 − µ̂2(n))2
)
− log (τ̂2(n)p̂2(n)) , (39)

where the first inequality holds by the definition of τ̂ +
2 (j) and τ̂2(j), and the second inequality is

due to Lemma 8. Using Lemma 9,

max1≤j≤n log
(
τ̂ +
2 (j)p̂+

2 (j)
)

√
n

a.s.→ 0. (40)

Using (39) and (40), together with (26)-(29), we have

0≤
log
(∑n

j=1 τ̂
+
2 (j)

)
√
n

−
log
(∑n

j=1 τ̂2(j)
)

√
n

≤∆2

1√
n

(
max
1≤j≤n

j∑
i=1

(
Y2(i)+

∆2

2

)
−

n∑
i=1

(
Y2(i)+

∆2

2

))
+ oa.s.(1). (41)

The random walk
∑j

i=1

(
Y2(i)+

∆2
2

)
has positive drift, and so by Lemma 1.4.1 of Prabhu (1998),

1√
n

(
max
1≤j≤n

j∑
i=1

(
Y2(i)+

∆2

2

)
−

n∑
i=1

(
Y2(i)+

∆2

2

))
P→ 0. (42)

Putting together (41) and (42), we have established (38). Then, (34) is established using (37) and

(38). □
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Lemma 4. Using TS in two-armed bandit environments in which arm 2 is sub-optimal, with p̂+
2

as defined in (35), for sufficiently large t,

p̂+
2 (N2(t))< p2(N2(t), t+1)< p̂2(N2(t)). (43)

Proof of Lemma 4. In (2) and (3), we provide control over the term

B2(N2(t), t+1)

= 1−Φ

(√
1+N2(t)

(
µ̂1(N1(t))− µ̂2(N2(t))+

Z1(t+1)√
1+N1(t)

))

= 1−Φ

(√
1+N2(t)

(
µ1 − µ̂2(N2(t))

)
+
√
1+N2(t)

(
µ̂1(N1(t))−µ1

)
+

√
1+N2(t)

1+N1(t)
t1/4

Z1(t+1)

t1/4

)
.

From Theorem 1,

N2(t)

log(t)
a.s.→ 2

∆2
2

(44)

N1(t)

t
a.s.→ 1. (45)

Consider the event

Ct+1 =

{∣∣∣∣Z1(t+1)

t1/4

∣∣∣∣≤ 1

}
.

Then almost surely, for t sufficiently large,

1−Φ
(√

1+N2(t)
(
µ1 − µ̂2(N2(t))

)
+Oa.s.

(√
log(t)t−1/4

))
≤ P (V2(t+1)<B2(N2(t), t+1), Ct+1 | Ft)

≤ P (V2(t+1)<B2(N2(t), t+1) | Ft)
(
= p2(N2(t), t+1)

)
≤ P (V2(t+1)<B2(N2(t), t+1), Ct+1 | Ft)+P

(
Cc

t+1

)
≤ 2

(
1−Φ

(√
1+N2(t)

(
µ1 − µ̂2(N2(t))

)
+Oa.s.

(√
log(t)t−1/4

)))
,

where the last inequality is due to (44) and (45), and so P(Cc
t+1) is asymptotically negligible

compared to P (V2(t+1)<B2(N2(t), t+1), Ct+1 | Ft). Then, (43) is established using Lemma 7.

□

2.3. Extension to Multiple Arms

In this section, we extend the SLLN and CLT for the regret of TS in two-armed settings (Theorems

1 and 2) to multi-armed settings. The key to the extensions is the fact that compared to the

probability of a single sub-optimal arm sampled mean exceeding that of the optimal arm, there
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is a much lower probability that two or more sub-optimal arm sampled means exceed that of

the optimal arm. So, effectively, each sub-optimal arm only competes with the optimal arm to

be played, and the analysis in multi-armed settings reduces to that in the two-armed setting.

Moreover, Nk(T ) for each sub-optimal arm k depends only on the rewards received for that arm.

So the Nk(T ) of different sub-optimal arms k are independent and contribute additively to the

overall CLT variance.

Theorem 3. Using TS, for each sub-optimal arm k,

Nk(T )

log(T )
a.s.→ 2

∆2
k

. (46)

Therefore, the regret satisfies the SLLN:

R(T )

log(T )
a.s.→
∑
k ̸=k∗

2

∆k

. (47)

Theorem 4. Using TS, for each sub-optimal arm k,

Nk(T )− 2
∆2

k
log(T )

2
∆2

k

√
2 log(T )

⇒N(0,1). (48)

Furthermore, for different sub-optimal arms k, the Nk(T ) are asymptotically independent. There-

fore, the regret satisfies the CLT:

R(T )−
∑

k ̸=k∗
2

∆k
log(T )√∑

k ̸=k∗
8

∆2
k
log(T )

⇒N(0,1). (49)

Proof of Theorems 3 and 4. Let δ ∈ (0,mink′ ∆k′). Denote the event

Ct+1 =

{
∀k′ ̸= k, k∗ :

Zk′(t+1)

M
<

δ

4

}
∩
{∣∣∣∣Zk∗(t+1)

M

∣∣∣∣< δ

4

}
.

Set M > 0 sufficiently large so that P(Ct+1)≥ 1/2 (for all t). When the bandit environment involves

more than two arms, the analysis can still be reduced to the two-armed case. In particular, effec-

tively each sub-optimal arm k only competes with the optimal arm k∗ to be played, and the behavior

of Nk(t) only depends on the rewards received for that sub-optimal arm k. The probability upper

and lower bounds in (50)-(53) show that each sub-optimal arm k effectively only competes with

the optimal arm k∗ to be played. Indeed, the probabilities in (50) and (53) can be approximated

using the same arguments from Lemmas 2 and 4, leading respectively to (46) and (48) for each

sub-optimal arm k.

P

(
µ̂k(Nk(t))+

Zk(t+1)√
1+Nk(t)

> µ̂k∗(Nk∗(t))+
δ

4

∣∣∣∣Ft

)
· 1
2

(50)
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≤ P

(
µ̂k(Nk(t))+

Zk(t+1)√
1+Nk(t)

> µ̂k∗(Nk∗(t))+
Zk∗(t+1)√
1+Nk∗(t)

, Ct+1

∣∣∣∣Ft

)
(51)

≤ P

(
µ̂k(Nk(t))+

Zk(t+1)√
1+Nk(t)

>max
k′ ̸=k

{
µ̂k′(Nk′(t))+

Zk′(t+1)√
1+Nk′(t)

}∣∣∣∣Ft

)
(52)

≤ P

(
µ̂k(Nk(t))+

Zk(t+1)√
1+Nk(t)

> µ̂k∗(Nk∗(t))+
Zk∗(t+1)√
1+Nk∗(t)

∣∣∣∣Ft

)
(53)

For each sub-optimal arm k, Nk(t)/Nk∗(t)
a.s.→ 0 and Nk(t)

a.s.→ ∞ using Theorem 1 of May et al.

(2012). So for t sufficiently large,
√
1+Nk′(t)>M for all arms k′. Using the event Ct+1 (satisfying

P(Ct+1)≥ 1/2 by construction), we obtain (51). To obtain (52), note that for any sub-optimal arm

k′ ̸= k, almost surely for sufficiently large t, on the event Ct+1,

µ̂k′(Nk′(t))+
Zk′(t+1)√
1+Nk′(t)

<µk′ +
δ

2
<µk∗ −

δ

2
< µ̂k∗(Nk∗(t))+

Zk∗(t+1)√
1+Nk∗(t)

.

To obtain (47) from (46), we only need to add up the contributions of each Nk(t) to the regret

R(t). To obtain (49) from (48), we next show that for different sub-optimal arms k, the Nk(t) are

asymptotically independent. From the proof of Lemma 3, in particular using the arguments leading

to (24), (25) and (33), we have almost surely,

max1≤j≤n
1
2
j(µk∗ − µ̂k(j))

2

√
n

+ oa.s.(1)≤
log
(∑n

j=1 τ̂k(j)
)

√
n

≤
1
2
n(µk∗ − µ̂k(n))

2

√
n

+ oa.s.(1)

and

log
(∑n

j=1 τk(j)
)

√
n

−
log
(∑n

j=1 τ̂k(j)
)

√
n

P→ 0.

So for each sub-optimal arm k, the τk(j) and Nk(t) only depend on the rewards for arm k. This

establishes the asymptotic independence of the Nk(t) for different sub-optimal arms k. The con-

clusion (49) then follows from (48) by summing up the contributions of each Nk(t) to the regret

R(t). □

3. Analysis of UCB

In this section, we analyze a version of UCB that is designed for iid Gaussian rewards with variance

1. We assume that the actual arm rewards are also iid Gaussian with variance 1, i.e., UCB is oper-

ating in a well-specified environment. (This version of UCB is called UCB1, and it was originally

proposed by Auer et al. (2002). It also works for general sub-Gaussian arm reward distributions.

With simple tuning, it can handle sub-Gaussian distributions with other variance proxies.) For

modifications and consideration of model mis-specification, see Section 4.
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Given Ft (the information collected up to and including time t), at time t+ 1 UCB plays the

arm with the highest index:

A(t+1)= argmax
k∈[K]

Uk(Nk(t), t+1),

where

Uk(Nk(t), t+1)= µ̂k(Nk(t))+

√
2 log(t+1)

Nk(t)
(54)

and µ̂k(n) =
1
n

∑n

j=1Xk(j). This version of UCB, was introduced as UCB1 in Auer et al. (2002).

As discussed in Chapter 8 of Lattimore and Szepesvári (2020), the expected regret for this version

of UCB satisfies:

lim
T→∞

E[R(T )]

log(T )
=
∑
k ̸=k∗

2

∆k

. (55)

3.1. Strong Law of Large Numbers

We first show that the regret of UCB satisfies a SLLN in multi-armed settings. As with TS, the

limit in the SLLN for UCB matches that of expected regret in (55). The proof here is adapted

from Propositions 7-8 of Cowan and Katehakis (2019).

Theorem 5. Using UCB, for each sub-optimal arm k,

Nk(T )

log(T )
a.s.→ 2

∆2
k

. (56)

Therefore, the regret satisfies the SLLN:

R(T )

log(T )
a.s.→
∑
k ̸=k∗

2

∆k

.

Proof of Theorem 5. This proof is an extension and simplification of Propositions 7-8 of Cowan

and Katehakis (2019).

We begin with the upper bound part of the proof. Let δ ∈ (0,∆k/2). For each sub-optimal arm

k, we have

Nk(T ) = 1+
T−1∑
t=K

I (A(t+1)= k, Uk(Nk(t), t+1)≥ µk∗ − δ, µ̂k(Nk(t))≤ µk + δ) (57)

+
T−1∑
t=K

I (A(t+1)= k, Uk(Nk(t), t+1)≥ µk∗ − δ, µ̂k(Nk(t))>µk + δ) (58)

+
T−1∑
t=K

I (A(t+1)= k, Uk(Nk(t), t+1)<µk∗ − δ) . (59)
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The first sum is upper bounded via:

(57)≤
T−1∑
t=K

I
(
A(t+1)= k, (∆k − 2δ)2 ≤ 2 log(t+1)

Nk(t)

)
(60)

≤
T−1∑
t=K

I
(
A(t+1)= k, Nk(t)≤

2 log(T )

(∆k − 2δ)2

)
≤ 2 log(T )

(∆k − 2δ)2
+1. (61)

The bound in (60) holds due to the events Uk(Nk(t), t+1)≥ µk∗ − δ and µ̂k(Nk(t))≤ µk + δ and

the definition of the index in (54).

The second sum is upper bounded via:

(58)≤
∞∑

t=K

I (A(t+1)= k, µ̂k(Nk(t))>µk + δ) . (62)

The indicators on the right side of (62) can equal 1 for at most finitely many t. (For each 1 in the

sum, arm k is played an additional time and an additional sample is incorporated into the sample

mean.)

The third sum is upper bounded via:

(59)≤
∞∑

t=K

I (A(t+1)= k, Uk∗(Nk∗(t), t+1)≤Uk(Nk(t), t+1)<µk∗ − δ)

≤
∞∑

t=K

I (Uk∗(Nk∗(t), t+1)<µk∗ − δ) . (63)

The indicators on the right side of (63) can equal 1 for at most finitely many t. (As t → ∞,

either Nk∗(t) increases to infinity or remains finite. In the first case, µ̂k∗(Nk∗(t)) → µk∗ , and so

for t sufficiently large, Uk∗(Nk∗(t), t+ 1)> µ̂k∗(Nk∗(t))> µk∗ − δ/2. In the second case, log(t+ 1)

in (54) increases without bound, and so Uk∗(Nk∗(t), t + 1) also increases without bound, with

Uk∗(Nk∗(t), t+1)>µk∗ for all t sufficiently large.)

Putting together (61)-(63) and sending T →∞ followed by δ ↓ 0, we have almost surely for each

sub-optimal arm k,

limsup
T→∞

Nk(T )

log(T )
≤ 2

∆2
k

. (64)

Therefore, for the optimal arm k∗, almost surely,

lim
T→∞

Nk∗(T )

T
= 1, (65)

which, by the form of the index in (54) and limt→∞ µ̂k∗(Nk∗(t))
a.s.
= µk∗ , implies that almost surely,

lim
t→∞

Uk∗(Nk∗(t), t+1)= µk∗ . (66)
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Then, (65) and (66) imply that almost surely for each sub-optimal arm k,

lim
T→∞

Nk(T ) =∞. (67)

(If (67) is not true for some sub-optimal arm j, then since the term log(t+1) grows without bound

in the index (54), we would eventually have Uj(Nj(t), t+1)>µk∗ + ϵ > Uk∗(Nk∗(t), t+1) for some

ϵ > 0 and all t sufficiently large, thereby contradicting (65).)

We now develop the lower bound parts of the proof. For all sub-optimal arms k,

Uk∗(Nk∗(Tk∗(j)− 1),Tk∗(j))>Uk(Nk(Tk∗(j)− 1),Tk∗(j)). (68)

We have for sufficiently large j, almost surely,

max
t∈[Tk∗ (j),Tk∗ (j+1)]

log(t)

Nk(t)
≤ log(Tk∗(j+1))

Nk(Tk∗(j)− 1)

=
log(Tk∗(j+1))

log(Tk∗(j))

log(Tk∗(j))

Nk(Tk∗(j)− 1)

≤ (1+ δ)
log(Tk∗(j))

Nk(Tk∗(j)− 1)
(69)

≤ (1+ δ)
1

2
(Uk(Nk(Tk∗(j)− 1),Tk∗(j))−µk + δ)2 (70)

≤ (1+ δ)
1

2
(Uk∗(Nk∗(Tk∗(j)− 1),Tk∗(j))−µk + δ)2 (71)

≤ (1+ δ)
1

2
(∆k +2δ)2. (72)

Note that (69) is due to (65), (70) is due to the form of the index in (54) and limt→∞ µ̂k(Nk(t))
a.s.
= µk,

(71) is due to (68), and (72) is due to limt→∞ µ̂k∗(Nk∗(t))
a.s.
= µk∗ . From (72), we have almost surely,

lim inf
T→∞

Nk(T )

log(T )
≥ 2

∆2
k

,

which together with (64), establishes (56). □

3.2. Central Limit Theorem

We now show that the regret of UCB satisfies a CLT in two-armed settings. The (mean) centering

in the CLT matches the asymptotics of the SLLN in Theorem 5 (and also that of expected regret

in (55)). To prove the CLT, we directly analyze the times Tk(j) during which the sub-optimal arm

k is played. We will see that these times are determined by what is essentially a perturbed random

walk with positive drift. Again, it turns out that the variability in the CLT is purely due to the

variability of the rewards of the sub-optimal arm. And this is reasonable in light of the fact that

the optimal arm is played much more than the sub-optimal arm, and so its sample mean is much

more concentrated around its true mean.



19

Theorem 6. In two-armed bandit environments, the regret of UCB satisfies the CLT:

R(T )− 2
∆
log(T )

2
∆

√
2 log(T )

⇒N(0,1). (73)

Proof of Theorem 6. Without loss of generality, let arm 2 be the sub-optimal arm. We first

establish a few preliminaries.

T2(j+1)

= inf

{
t : t∈Z+, t > T2(j), µ̂2(j)+

√
2 log t

j
> µ̂1(N1(t− 1))+

√
2 log t

N1(t− 1)

}

= inf

t : t∈Z+, t > T2(j), t > exp

 j

2

(
∆2 −

(
µ̂2(j)−µ2

)
+
(
µ̂1(N1(t− 1))−µ1

)
+

√
2 log t

N1(t− 1)

)2


= 1+ ⌊T2(j)∨ exp(S2(j))⌋ , (74)

where we define

S2(j) =
j

2

(
∆2 −

(
µ̂2(j)−µ2

)
+
(
µ̂1(N1(T2(j+1)− 1))−µ1

)
+

√
2 log(T2(j+1))

N1(T2(j+1)− 1)

)2

.

Expanding the square,

S2(j) =∆2

j∑
i=1

(
Y2(i)+

∆2

2

)
+E2(j), (75)

where Y2(i) = −(X2(i) − µ2) is an independent sequence of N(0,1) random variables. And the

sequence of random variables E2(j) satisfies:

E2(j+1)−E2(j)
a.s.→ 0, (76)

which follows from the LIL and the conclusions from Theorem 5:

N2(t)

log(t)
a.s.→ 2

∆2
2

N1(t)

t
a.s.→ 1.

The main task is to show that

log (T2(j))− j
∆2

2
2

∆2

√
j

⇒N(0,1). (77)

This is established in Lemma 5. As in the proof of Theorem 2, let x ∈ R, and define h(t) =⌊
x 2

∆2
2

√
2t+ 2

∆2
2
t
⌋
. Then,

P

(
log (T2(h(t)))−h(t)

∆2
2
2

∆2

√
h(t)

>−x

)
∼ P

(
log (T2(h(t)))−h(t)

∆2
2
2

∆2

√
h(t)

>
t−h(t)

∆2
2
2

∆2

√
h(t)

)
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= P (T2(h(t))> et)

= P (N2(e
t)≤ h(t))

= P

N2(e
t)− t 2

∆2
2

2
∆2

2

√
2t

≤ x

 . (78)

Using this together with (77), (73) is established. □

Lemma 5. Using UCB in two-armed bandit environments in which arm 2 is sub-optimal,

log(T2(j))− j
∆2

2
2√

j
⇒N(0,1). (79)

Proof of Lemma 5. We first establish some preliminary facts. For each positive integer index l,

define

j∗l = inf{j > j∗l−1 : exp(S2(j))≥T2(j)}, (80)

so that from (74), the j∗l are precisely those instances j satisfying

T2(j+1)= 1+ ⌊exp(S2(j))⌋ .

Note that

j∗l+1 − j∗l

= inf {i≥ 1 : exp(S2(j
∗
l + i))> 1+ ⌊exp(S2(j

∗
l ))⌋+ i}

= inf {i≥ 1 : S2(j
∗
l + i)>S2(j

∗
l )+ log(1+ ⌊exp(S2(j

∗
l ))⌋+ i)−S2(j

∗
l )}

= inf

{
i≥ 1 : ∆2

i∑
m=1

(
Y2(j

∗
l +m)+

∆2

2

)
>E2(j

∗
l )−E2(j

∗
l + i)+ log(1+ ⌊exp(S2(j

∗
l ))⌋+ i)−S2(j

∗
l )

}
,

(81)

where in (81), we have used the definition of E2(j) as a component of S2(j), as expressed in (75).

Also define

M2(l) = inf

{
i≥ 1 : ∆2

i∑
m=1

(
Y2(j

∗
l +m)+

∆2

2

)
> i

∆2
2

4

}
.

Examining (81), using (76) and the fact that log(i+1)− log(i)
a.s.→ 0, we have

|E2(j
∗
l )−E2(j

∗
l + i)+ log(1+ ⌊exp(S2(j

∗
l ))⌋+ i)−S2(j

∗
l )| ≤ i

∆2
2

4
,

almost surely, for sufficiently large l and all i≥ 1, and thus also,

j∗l+1 − j∗l ≤M2(l). (82)
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Proceeding with the main parts of the proof, there are two cases to consider. In the first case, if

j = j∗l for some j∗l , then

log(T2(j))∨S2(j) = S2(j). (83)

In the second case, if j is such that j∗l < j < j∗l+1 for some j∗l and j∗l+1, then

log(T2(j))∨S2(j) = log(T2(j)).

And almost surely, for sufficiently large j (and hence, sufficiently large j∗l ), we have

0≤ log(T2(j))−S2(j)

≤
(
log
(
T2(j

∗
l +1)+M2(l)

)
−S2(j

∗
l )
)
−
(
S2(j)−S2(j

∗
l )
)

(84)

=
(
log
(
1+ ⌊expS2(j

∗
l )⌋+M2(l)

)
−S2(j

∗
l )
)
−
(
S2(j)−S2(j

∗
l )
)

(85)

≤
(
log
(
1+ ⌊exp(S2(j

∗
l ))⌋+M2(l)

)
−S2(j

∗
l )
)
− inf

1≤i≤M2(l)

{
∆2

i∑
m=1

(
Y2(j

∗
l +m)+

∆2

2

)}
+M2(l)

∆2
2

4
.

(86)

Note that (84) follows from (82), which is an upper bound on j∗l+1− j∗l , as well as the fact that for

j such that j∗l < j < j∗l+1,

T2(j) = T2(j− 1)+1.

This fact is true because of the identity (74), together with the definition of j∗l in (80), which

implies that for j such that j∗l < j < j∗l+1,

exp(S2(j))< T2(j).

Also, (85) follows from the definition of j∗l as satisfying:

T2(j
∗
l +1)= 1+ ⌊exp(S2(j

∗
l ))⌋ .

And (86) follows from the relation in (75), so that

S2(j)−S2(j
∗
l ) =∆2

j−j∗l∑
m=1

(
Y2(j

∗
l +m)+

∆2

2

)
+E2(j)−E2(j

∗
l ),

along with the fact that almost surely, for sufficiently large jl,

|E2(j)−E2(j
∗
l )| ≤ (j− j∗l )

∆2
2

4
≤M2(l)

∆2
2

4
.
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Using (86), and the fact that for each l, the M2(l) and Y2(j
∗
l +m), 1≤m≤M2(l) are iid random

variables, we have

log(T2(j))√
j

− S2(j)√
j

P→ 0 (87)

as j →∞ along sequences of j such that j∗l < j < j∗l+1 for some j∗l and j∗l+1. Putting together (87)

and (83) (for the cases that j = j∗l for some j∗l ), we have shown that

log(T2(j))∨S2(j)√
j

− S2(j)√
j

P→ 0 (88)

as j →∞ (without restrictions on j). Also, from (75), we have

S2(j)√
j

=
∆2

∑j

i=1

(
Y2(i)+

∆2
2

)
+E2(j)√

j
, (89)

where E2(j)/
√
j

a.s.→ 0. Then, (79) is established using (88) and (89) together with

log(T2(j+1))√
j

− log(T2(j))∨S2(j)√
j

a.s.→ 0,

which is obtained from (74). □

3.3. Extension to Multiple Arms

In this section, we extend the CLT for the regret of UCB in two-armed settings (Theorem 6) to

multi-armed settings. The key to the extension is the fact that once the UCB index of a sub-

optimal arm exceeds that of the optimal arm, it is guaranteed that the particular sub-optimal arm

will be played relatively soon (if not immediately). Although there could simultaneously be other

sub-optimal arms with indices higher than that of the optimal arm, these other arms cannot delay

the play of the particular sub-optimal arm by too long. So, effectively, each sub-optimal arm only

competes with the optimal arm to be played, and the analysis in multi-armed settings reduces to

that in the two-armed setting. As is the case for TS, Nk(T ) for each sub-optimal arm k depends

only on the rewards received for that arm. So again, the Nk(T ) of different sub-optimal arms k are

independent and contribute additively to the overall CLT variance.

Theorem 7. Using UCB, for each sub-optimal arm k,

Nk(T )− 2
∆2

k
log(T )

2
∆2

k

√
2 log(T )

⇒N(0,1). (90)

Furthermore, for different sub-optimal arms k, the Nk(T ) are asymptotically independent. There-

fore, the regret satisfies the CLT:

R(T )−
∑

k ̸=k∗
2

∆k
log(T )√∑

k ̸=k∗
8

∆2
k
log(T )

⇒N(0,1). (91)
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Proof of Theorem 7. For any sub-optimal arm k, let ϵ= exp(
∆2

k
8
)− 1. Define

T −
k (j+1)= inf

{
t : t∈Z+, t > T −

k (j), Uk(j, t+1)>Uk∗(Nk∗(t), t+1)
}

(92)

T +
k (j+1)= inf

{
(1+ ϵ)t : t∈R+, t≥T +

k (j), Uk(j, t+1)≥Uk∗(Nk∗(⌊t⌋), t+1)
}
. (93)

Recall that

Tk(j+1)= inf

{
t : t∈Z+, t > Tk(j), Uk(j, t+1)>max

k′ ̸=k
Uk′(Nk′(t), t+1)

}
.

Almost surely, for j sufficiently large,

T −
k (j)≤Tk(j)≤T +

k (j). (94)

It is straightforward to see that the lower bound on Tk(j) in (94) holds. The upper bound holds

by the following argument. Each time the UCB index for arm k exceeds that of arm k∗, it is

guaranteed that arm k will be played before the next time that arm k∗ is played. The only possible

delay to arm k being played immediately upon its UCB index exceeding that of arm k∗ is if there

are also other sub-optimal arms with their UCB indices exceeding that of arm k∗. These other

sub-optimal arms could compete with arm k to be played, thus potentially delaying plays of arm

k. However, from Theorem 5, for each sub-optimal arm k′ ̸= k, Nk′(t) ≤ 4
∆2

k′
log(t) almost surely

for t sufficiently large. Moreover, ϵt >
∑

k′ ̸=k,k∗
4

∆2
k′
log(t) for sufficiently large t. So for sufficiently

large t, the delay cannot be longer than ϵt. Accordingly, the times T +
k (j) (in (93)) are delayed by a

1+ ϵ multiplicative factor compared to the times T −
k (j) (in (92)). Thus, the upper bound on Tk(j)

in (94) must hold for sufficiently large j.

Applying the analysis from Lemma 5 to T −(j), we have

log(T −
k (j))− j

∆2
k
2√

j
⇒N(0,1).

Together with Lemma 6 and (94), we obtain

log(Tk(j))− j
∆2

k
2√

j
⇒N(0,1).

Then, (90) is established using arguments leading up to (78) in the proof of Theorem 6. From the

proofs of Lemmas 5 and 6,

log(T −
k (j))√
j

− S−
k (j)√
j

P→ 0

log(T +
k (j))√
j

− S+
k (j)√
j

P→ 0
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where

S−
k (j) =∆k

j∑
i=1

(
Yk(i)+

∆k

2

)
+E−

k (j)

S+
k (j) =∆k

j∑
i=1

(
Yk(i)+

∆k

2

)
+E+

k (j),

with Yk(i) =−(Xk(i)− µk), and (E−
k (j) +E+

k (j))/
√
j

a.s.→ 0. This establishes the asymptotic inde-

pendence of Nk(t) for different sub-optimal arms k. Then, (91) follows from summing up the

contributions of each Nk(t) to the regret R(t). □

Lemma 6. Using UCB, for each sub-optimal arm k, with T +
k (j) as defined in (93),

log(T +
k (j))− j

∆2
k
2√

j
⇒N(0,1). (95)

Proof of Lemma 6. Note that

T +
k (j+1)

= inf

{
(1+ ϵ)t : t∈R+, t≥T +

k (j), t≥ exp

(
j

2

(
∆k −

(
µ̂k(j)−µk

)
+

(
µ̂k∗(Nk∗(⌊t⌋− 1))−µk∗

)
+

√
2 log(t)

Nk∗(⌊t⌋− 1)

)2
)}

= (1+ ϵ)
(
T +
k (j)∨ exp(S+

k (j))
)
, (96)

where

S+
k (j) =

j

2

∆k −
(
µ̂k(j)−µk

)
+
(
µ̂k∗(Nk∗(⌊T +

k (j+1)/(1+ ϵ)⌋− 1))−µk∗

)
+

√√√√√ 2 log(
T +
k

(j+1)

1+ϵ
)

Nk∗(⌊
T +
k

(j+1)

1+ϵ
⌋− 1)


2

.

Expanding the square,

S+
k (j) =∆k

j∑
i=1

(
Yk(i)+

∆k

2

)
+E+

k (j), (97)

where Yk(i) = −(Xk(i) − µk) is an independent sequence of N(0,1) random variables. And the

sequence of random variables E+
k (j) satisfies:

E+
k (j+1)−E+

k (j)
a.s.→ 0, (98)

which follows from the LIL and the conclusions from Theorem 5.

For each positive integer index l, define

j∗l = inf{j > j∗l−1 : exp(S
+
k (j))≥T +

k (j)}, (99)
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so that from (96), the j∗l are precisely those instances j satisfying

T +
k (j+1)= (1+ ϵ) exp(S+

k (j)).

Note that

j∗l+1 − j∗l = inf
{
i≥ 1 : exp(S+

k (j
∗
l + i))≥ (1+ ϵ)i exp(S+

k (j
∗
l ))
}

= inf
{
i≥ 1 : S+

k (j
∗
l + i)>S+

k (j
∗
l )+ i log(1+ ϵ)

}
= inf

{
i≥ 1 : ∆k

i∑
m=1

(
Yk(j

∗
l +m)+

∆k

2

)
>E+

k (j
∗
l )−E+

k (j
∗
l + i)+ i log(1+ ϵ)

}
, (100)

where in (100), we have used the definition of E+
k (j) as a component of S+

k (j), as expressed in (97).

Also define

Mk(l) = inf

{
i≥ 1 : ∆k

i∑
m=1

(
Yk(j

∗
l +m)+

∆k

2

)
> i

∆2
k

4

}
.

Using (98), we have

∣∣E+
k (j

∗
l )−E+

k (j
∗
l + i)+ i log(1+ ϵ)

∣∣≤ i
∆2

k

4
,

almost surely, for sufficiently large l and all i≥ 1, and thus also,

j∗l+1 − j∗l ≤Mk(l). (101)

Proceeding with the main parts of the proof, there are two cases to consider. In the first case, if

j = j∗l for some j∗l , then

log(T +
k (j))∨S+

k (j) = S+
k (j). (102)

In the second case, if j is such that j∗l < j < j∗l+1 for some j∗l and j∗l+1, then

log(T +
k (j))∨S+

k (j) = log(T +
k (j)).

And almost surely, for sufficiently large j (and hence, sufficiently large j∗l ), we have

0≤ log(T +
k (j))−S+

k (j)

≤
(
log
(
(1+ ϵ)Mk(l)T +

k (j∗l +1)
)
−S+

k (j
∗
l )
)
−
(
S+
k (j)−S+

k (j
∗
l )
)

(103)

= (Mk(l)+ 1) log(1+ ϵ)−
(
S+
k (j)−S+

k (j
∗
l )
)

(104)

≤ (Mk(l)+ 1) log(1+ ϵ)− inf
1≤i≤Mk(l)

{
∆k

i∑
m=1

(
Yk(j

∗
l +m)+

∆k

2

)}
+Mk(l)

∆2
k

4
. (105)
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Note that (103) follows from (101), which is an upper bound on j∗l+1 − j∗l , as well as the fact that

for j such that j∗l < j < j∗l+1,

T +
k (j) = (1+ ϵ)T +

k (j− 1).

This fact is true because of the identity (96), together with the definition of j∗l in (99), which

implies that for j such that j∗l < j < j∗l+1,

exp(S+
k (j))< T +

k (j).

Also, (104) follows from the definition of j∗l as satisfying:

T +
k (j∗l +1)= (1+ ϵ) exp(S+

k (j
∗
l )).

And (105) follows from the relation in (97), so that

S+
k (j)−S+

k (j
∗
l ) =∆k

j−j∗l∑
m=1

(
Yk(j

∗
l +m)+

∆k

2

)
+E+

k (j)−E+
k (j

∗
l ),

along with the fact that almost surely, for sufficiently large jl,

∣∣E+
k (j)−E+

k (j
∗
l )
∣∣≤ (j− j∗l )

∆2
k

4
≤Mk(l)

∆2
k

4
.

Using (105), and the fact that for each l, the Mk(l) and Yk(j
∗
l +m), 1≤m≤Mk(l) are iid random

variables, we have

log(T +
k (j))√
j

− S+
k (j)√
j

P→ 0 (106)

as j →∞ along sequences of j such that j∗l < j < j∗l+1 for some j∗l and j∗l+1. Putting together (106)

and (102) (for the cases that j = j∗l for some j∗l ), we have shown that

log(T +
k (j))∨S+

k (j)√
j

− S+
k (j)√
j

P→ 0 (107)

as j →∞ (without restrictions on j). Also, from (97), we have

S+
k (j)√
j

=
∆k

∑j

i=1

(
Yk(i)+

∆k
2

)
+E+

k (j)√
j

, (108)

where
E+
k
(j)

√
j

a.s.→ 0. Then, (95) is established using (107) and (108) together with (96). □
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4. Modifications and Model Mis-specification

In this section, we develop SLLN’s in Proposition 1 and CLT’s in Proposition 2 for the regret

of TS and UCB tuned for Gaussian rewards with variance σ2. For the SLLN’s, the rewards for

each arm k can have an arbitrarily distribution with finite mean µk. For the CLT’s, there is the

additional requirement of a finite variance σ2
k for each arm k. The proofs of Propositions 1 and 2

are straightforward modifications of those of Theorems 3, 4, 5 and 7, and are thus omitted.

In the SLLN’s in Proposition 1, we see that designing for Gaussian rewards with larger variance

σ2 increases the amount of regret accumulated in the long run. We see a similar effect in the CLT’s

in Proposition 2, along with an increase in the CLT variance. Additionally, increasing the actual

reward variances σ2
k also increases the CLT variance. Nevertheless, the increases in the regret and

regret variance in the SLLN’s and CLT’s due to increasing σ2 are counter-balanced by lighter regret

distribution tails, as we know from Fan and Glynn (2021b). For example, if the rewards are Gaussian

with common variance σ2
0 for all arms, then using UCB designed for variance σ2 Gaussian rewards

will yield a regret distribution with tail exponent −σ2/σ2
0. Specifically, logP(R(T )> x)/ log(x)→

−σ2/σ2
0 uniformly for x> log1+ϵ(T ) (for arbitrarily small, fixed ϵ > 0) as T →∞. (See Corollary 1

and also the more general results in Section 5 of Fan and Glynn (2021b).)

The SLLN’s and CLT’s here are quite robust to model mis-specification, and the limits change in

a continuous manner in response to changes in the algorithm design and/or reward distributions.

This is in contrast to expected regret, which can be highly sensitive to such changes. As can be

seen via the tail approximations for the regret distribution developed in Fan and Glynn (2021b),

when the bandit environment is just slightly mis-specified relative to the algorithm design, the

expected regret can change from scaling as log(T ) to scaling as T a for some 0<a< 1.

Proposition 1. Using either TS or UCB designed for Gaussian rewards with variance σ2, for

each sub-optimal arm k,

Nk(T )

log(T )
a.s.→ 2σ2

∆2
k

. (109)

Therefore, the regret satisfies the SLLN:

R(T )

log(T )
a.s.→
∑
k ̸=k∗

2σ2

∆k

. (110)

Proposition 2. Suppose the rewards for arm k have variance σ2
k. Using either TS or UCB

designed for Gaussian rewards with variance σ2, for each sub-optimal arm k,

Nk(T )− 2σ2

∆2
k
log(T )

2σσk

∆2
k

√
2 log(T )

⇒N(0,1). (111)
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Furthermore, for different sub-optimal arms k, the Nk(T ) are asymptotically independent. There-

fore, the regret satisfies the CLT:

R(T )−
∑

k ̸=k∗
2σ2

∆k
log(T )√∑

k ̸=k∗
8σ2σ2

k

∆2
k

log(T )

⇒N(0,1). (112)

5. Numerical Simulations

In this section, we numerically examine the CLT approximations of the regret of UCB and TS

provided by Proposition 2 (specifically (111)). See Figures 1 and 2 for the UCB and TS (respec-

tively) simulation results. For both UCB and TS, we see that as the algorithms are modified so

that the regret distribution tail is made lighter (i.e., by designing for rewards with larger variances,

as discussed in Section 4), the shape of the distribution becomes more like that of a Gaussian.

However, even when the regret tail is made lighter, the distributions in Figures 1 and 2 still exhibit

some skewness (with a right tail). This is more noticeable for TS, which has been empirically noted

to exhibit more volatile regret behavior than UCB. The regret of TS has more tendency to be at

the extremes: either very low or quite high, thereby resulting in a more skewed regret distribution.

In Figure 3, we quantitatively examine the quality of the CLT approximation for the regret of

UCB and TS. In 3a, we plot the ratio of the empirically-observed regret mean to the CLT-predicted

regret mean. In 3b we plot the ratio of the empirically-observed regret standard deviation to the

CLT-predicted regret standard deviation. We see that the mean and standard deviation of regret

predicted by the CLT are very good approximations for those of UCB. However, the approximations

for TS are poorer for the time horizons (up to 50,000) included in the plots. Nevertheless, the

curves for TS are all monotone increasing, which suggests that the CLT approximation for the

regret of TS keeps improving as the time horizon gets longer.

Interestingly, when we use versions of TS and UCB tuned to yield lighter regret tails (more

negative tail exponents), it appears that longer time horizons are required for the ratios in Figures

3a and 3b to converge to 1. Nevertheless, we do find through simulations that for any fixed time

horizon, the empirically-observed mean and standard deviation of regret corresponding to more

negative tail exponents are strictly greater than those corresponding to less negative tail expo-

nents. This (perhaps somewhat obvious) qualitative finding agrees with the theory predictions in

Propositions 1 and 2.

Appendix A: Technical Lemmas

Lemma 7. For any z > 0,

1

4
√
πz2

e−z2/2 ≤ 1−Φ(z)≤ 1

2
√
πz2

e−z2/2.
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(a) Tail Exponent: −2 (b) Tail Exponent: −3

(c) Tail Exponent: −4 (d) Tail Exponent: −5

Figure 1 Distribution of the number of sub-optimal arm plays by UCB at time T = 2000 for a two-armed Gaussian

bandit with unit variances and arm mean gap ∆ = 0.3. In sub-figures (a)-(d), UCB is tuned to yield

different tail exponents of the regret distribution. Each histogram consists of 106 replications.

Proof of Lemma 7. See Formula 7.1.13 of Abramowitz and Stegun (1964). □

Lemma 8. Let a1, a2, . . . be a real-valued sequence. Then for any n,

max
1≤i≤n

ai ≤ log

(
n∑

i=1

eai

)
≤ max

1≤i≤n
ai + log(n).

Proof of Lemma 8. The lower bound follows from:

max
1≤i≤n

ai = log

(
max
1≤i≤n

eai
)
≤ log

(
n∑

i=1

eai

)
.

The upper bound follows from:

log

(
n∑

i=1

eai

)
≤ log

(
n · max

1≤i≤n
eai
)
= max

1≤i≤n
ai + log(n).

□
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(a) Tail Exponent: −2 (b) Tail Exponent: −3

(c) Tail Exponent: −4 (d) Tail Exponent: −5

Figure 2 Distribution of the number of sub-optimal arm plays by TS at time T = 2000 for a two-armed Gaussian

bandit with unit variances and arm mean gap ∆ = 0.3. In sub-figures (a)-(d), TS is tuned to yield

different tail exponents of the regret distribution. Each histogram consists of 106 replications.

Lemma 9. Let pj > 0 be a sequence of probabilities such that pj → 0. Let Gj be a sequence of

independent geometric random variables such that Gj has corresponding success probability pj.

Then for any a> 0,

max1≤j≤n log(Gjpj)

na

a.s.→ 0.

Proof of Lemma 9. First, almost surely,

lim inf
n→∞

max
1≤j≤n

log(Gjpj)≥ 0. (113)

This follows from the fact that for j sufficiently large,

P(Gjpj < 1)≤ 1− (1− pj)
⌊p−1

j ⌋ ≤ 1− 1/(2e).

Next, by a straightforward argument,

P
(
max
1≤j≤n

log(Gjpj)>na/2 i.o.

)
= P

(
log(Gnpn)>na/2 i.o.

)
. (114)
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(a) Observed Mean / CLT-predicted Mean (b) Observed Std Dev / CLT-predicted Std Dev

Figure 3 Each curve tracks the ratio of the empirically-observed regret mean (standard deviation) to the CLT-

predicted regret mean (standard deviation) over time. For different tail exponents (as indicated by the

legend color), the curves for UCB are plotted using solid lines, while the curves for TS are plotted using

dashed lines. In all cases, the environment is a two-armed Gaussian bandit with unit variances and arm

mean gap ∆= 0.7. Each curve is an average over 106 replications.

The right side of (114) is equal to zero by the Borel-Cantelli Lemma since

P
(
log(Gnpn)>na/2

)
= (1− pn)

⌊p−1
n exp(na/2)⌋ ≤ 2exp(− exp(na/4))

for sufficiently large n. Therefore, almost surely,

limsup
n→∞

max1≤j≤n log(Gjpj)

na/2
≤ 1. (115)

Together, (113) and (115) give the desired result. □
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