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Much of the literature on optimal design of bandit algorithms is based on minimization of expected regret. It

is well known that algorithms that are optimal over certain exponential families can achieve expected regret

that grows logarithmically in the number of trials, at a rate specified by the Lai-Robbins lower bound. In this

paper, we show that when one uses such optimized algorithms, the resulting regret distribution necessarily

has a very heavy tail, specifically, that of a truncated Cauchy distribution. Furthermore, for p > 1, the p’th

moment of the regret distribution grows much faster than poly-logarithmically, in particular as a power of

the total number of trials. We show that optimized UCB algorithms are also fragile in an additional sense,

namely when the problem is even slightly mis-specified, the regret can grow much faster than the conventional

theory suggests. Our arguments are based on standard change-of-measure ideas, and indicate that the most

likely way that regret becomes larger than expected is when the optimal arm returns below-average rewards

in the first few arm plays, thereby causing the algorithm to believe that the arm is sub-optimal. To alleviate

the fragility issues exposed, we show that UCB algorithms can be modified so as to ensure a desired degree

of robustness to mis-specification. In doing so, we also show a sharp trade-off between the amount of UCB

exploration and the tail exponent of the resulting regret distribution.
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1. Introduction

The multi-armed bandit (MAB) problem is a widely studied model that is both useful in practical

applications and is a valuable theoretical paradigm exhibiting the exploration-exploitation trade-

off that arises in sequential decision-making under uncertainty. More specifically, the goal in a

MAB problem is to maximize the expected reward derived from playing, at each time step, one of

K bandit arms. Each arm has its own unknown reward distribution, so that playing a particular

arm both provides information about that arm’s reward distribution (exploration) and provides an

associated random reward (exploitation). One measure of the quality of a MAB algorithm is the

(pseudo-)regret R(T ), which is essentially the number of times the sub-optimal arms are played
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over a time horizon T , as compared to an oracle that acts optimally with knowledge of the means

of all arm reward distributions; a precise definition will be given in Section 2.

There is an enormous literature on this problem, with much of the research having been focused

on algorithms that attempt to minimize expected regret. In this regard, a fundamental result is the

Lai-Robbins lower bound that establishes that the expected regret E[R(T )] grows logarithmically

in T , with a multiplier that depends on the Kullback-Leibler (KL) divergences between the optimal

arm and each of the sub-optimal arms; see Lai and Robbins (1985). A predominant focus in the

bandit literature is on designing algorithms that attain the Lai-Robbins lower bound over particular

exponential families of distributions; see Lai and Robbins (1985) and Burnetas and Katehakis

(1996). We call such algorithms optimized. Among the many optimized algorithms in the literature,

two prominent examples are the KL-upper confidence bound (KL-UCB) algorithm and Thompson

sampling (TS); see Cappé et al. (2013) (and earlier work: Garivier and Cappé (2011), Maillard

et al. (2011)) for KL-UCB, and Korda et al. (2013) for TS (originally proposed by Thompson

(1933)). (Earlier optimized UCB-type algorithms can be found in, for example, Lai (1987) and

Agrawal (1995).)

In this paper, we show that any such optimized algorithm necessarily has the undesirable property

that the tail of R(T ) is very heavy. In particular, because E[R(T )] is O(log(T )) (where O(aT ) is

any sequence having the property that its absolute value is dominated by a constant multiple of

aT ), Markov’s inequality implies that for c > 0, P(R(T )> cT ) =O(log(T )/T ) as T →∞. One of our

central results is a lower bound characterization of P(R(T )> cT ) that roughly establishes that this

probability is attained, namely it is roughly of order T−1 for optimized algorithms. More precisely,

our Theorem 1 shows that optimized MAB algorithms automatically have the property that

P(R(T )>x)≍ 1

x

as T →∞, uniformly in x with T a ≤ x≤ cT , for any 0<a< 1 and suitable c > 0. (We write aT ≍ bT

as T → ∞ whenever log(aT )/ log(bT ) converges to 1 as T → ∞.) In other words, the tail of the

regret R(T ) looks, in logarithmic scale, like that of a truncated Cauchy distribution (truncated

due to the time horizon T ). Thus, such algorithms fail to produce logarithmic regret with large

probability, and when they fail to produce such regret, the magnitude of the regret can be very

large. This is one sense in which bandit algorithms optimized for expected regret can be fragile.

An additional sense in which such optimized bandit algorithms are fragile is their sensitivity to

model mis-specification. By this, we mean that if an algorithm has been optimized to attain the Lai-

Robbins lower bound over a particular class of bandit environments (e.g., with the arm distributions

belonging to a specific exponential family), then we can see much worse regret behavior when the
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environment presented to the algorithm does not belong to the class. For example, we show that

for the KL-UCB algorithm designed for Gaussian environments with known and equal variances

but unknown means, the expected regret for Gaussian environments can grow as a power T r when

the variance of the optimal arm’s rewards is larger than the variance built into the algorithm’s

design. In fact, r can be made arbitrarily close to 1 depending on how large the optimal arm’s

variance is, relative to the variance of the algorithm’s design (Corollary 2). In other words, even

when the mis-specification remains Gaussian, the expected regret can grow at a rate close to linear

in the time horizon T . Besides mis-specification of the bandits’ marginal reward distributions,

optimized algorithms are equally susceptible to mis-specification of the serial dependence structure

of rewards. For example, expected regret deteriorates similarly as reward processes (e.g., evolving

as Markov chains) become more autocorrelated (Corollary 3, Corollary 4 and Example 5).

A final sense in which such optimized algorithms are fragile is that when one only slightly

modifies the objective, the regret behavior of the algorithm can look much worse. In particular,

suppose that we consider minimizing E[R(T )p] for some p > 1, rather than E[R(T )]. This objective

would arise naturally, for example, in the presence of risk aversion to high regret. One might

reasonably expect that algorithms optimized for E[R(T )] would have the property that E[R(T )p]

would then grow poly-logarithmically in T . However, the Cauchy-type tails discussed earlier imply

that (R(T )/ log(T ))p is not a uniformly integrable sequence. We show in Corollary 5 that for

optimized algorithms, E[R(T )p] grows roughly at least as fast as T p−1 as T →∞.

Our proofs rely on change-of-measure arguments that also provide insight into how algorithms

optimized for expected regret can fail to identify the optimal arm, thereby generating large regret.

For example, we show that conditional on large regret, the sample means of sub-optimal arms obey

laws of large numbers that indicate that they continue to behave in their usual way; see Proposition

4. This suggests that the most likely way that large regret occurs for such optimized algorithms is

when the optimal arm under-performs in the exploration phase at the start of the experiment, after

which it is played infrequently, thereby generating large amounts of regret. This intuitive scenario

has been heuristically considered several times in the literature (see, e.g., Audibert et al. (2009)),

but this paper provides the theoretical justification for its central role in generating large regret.

To mitigate some of the fragility issues we expose, we show how to modify UCB algorithms so as

to ensure a desired degree of robustness to model mis-specification. The modification is designed

to lighten the regret distribution tail to a given exponent, thereby creating a prescribed margin of

safety against model mis-specification. As a part of our analysis, we provide a trade-off between

the logarithmic rate of exploration and the resulting heaviness of the regret tail. For example, in

well-specified settings, if one increases the amount of exploration by a factor of (1 + b) times for

any desired b > 0, then the tail of the resulting regret distribution will have an exponent of −(1+b)
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(or less). In particular, P(R(T )>x)≍ x−(1+b) as T →∞, uniformly in x with loga(T )≤ x≤ cT , for

any a> 1 and suitable c > 0.

The rest of the paper is structured as follows. After discussing related work in Section 1.1, we

introduce the setup for the rest of the paper in Section 2. In Section 3.1, we establish our main

result, Theorem 1, that optimized algorithms have regret distributions for which the tails are

truncated Cauchy. This result requires a technical condition (Definition 2), which holds essentially

for all continuous reward distributions. To illustrate the key ideas behind Theorem 1, we prove

a simplified version of the result in Section 3.2. We develop in Section 3.3 tight upper bounds

characterizing the regret tail for KL-UCB in settings where the regret tail is lighter than truncated

Cauchy (because the condition in Definition 2 does not hold); see Theorem 2. In Section 3.4, we

provide an alternative, intuitive proof of the generalized Lai-Robbins lower bound for expected

regret (Theorem 3) by focusing on the regret tail and using our change-of-measure arguments. Our

proof sheds new light on the result and further provides a sharp trade-off between lighter regret tails

and larger expected regret (Proposition 6). In Sections 4.1 and 4.3, we show that the performance of

optimized algorithms can deteriorate sharply under the slightest amount of mis-specification of the

distribution or the serial dependence structure of the rewards. These insights make use of results

from Section 4.2, where we establish general lower bounds for the regret tail of algorithms such

as KL-UCB when the rewards come from stochastic processes (Theorem 4). Moreover, we show in

Section 4.4 that such optimized algorithms offer no control over the p’th moment of regret for any

p > 1. In Section 5.1, building upon Section 3.3, we discuss how to design UCB algorithms to achieve

any desired exponent of the regret tail uniformly over a general class of bandit environments. We

then discuss how lighter regret tails provide protection against mis-specification of the distribution

of rewards and the serial dependence structure of rewards in Sections 5.2 and 5.3, respectively. In

Section 7, we examine some numerical experiments. We conclude with the proofs of Theorems 1

and 2 in Sections 6.1 and 6.2, respectively.

1.1. Related Work

In terms of related work, Audibert et al. (2009), Salomon and Audibert (2011) study concentration

properties of the regret distribution. In particular, Audibert et al. (2009) develop a finite-time

upper bound on the tail of the regret distribution for a particular version of UCB in bounded reward

settings. Their upper bound has polynomial rates of tail decay, which are adjustable depending

on algorithm settings. One of their motivations for developing regret tail bounds is to establish a

trade-off between the rate of exploration and the resulting heaviness of the regret tail. However,

it is lower bounds on the regret tail that are needed to conclusively establish the trade-off and
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confirm that the regret distribution is heavy-tailed. Our lower bounds turn out to be frequently

tight.

The regret distribution tail approximations developed in the current work are complementary to

the strong laws of large numbers (SLLN’s) and central limit theorems (CLT’s) developed for bandit

algorithms in instance-dependent settings in Fan and Glynn (2022). For example, in the Gaussian

bandit setting (with unit variances for simplicity), for both TS and UCB, the regret satisfies the

SLLN:

R(T )

log(T )
a.s.→
∑
i ̸=i∗

2

∆i

and the CLT:

R(T )−
∑

i̸=i∗
2
∆i

log(T )√∑
i ̸=i∗

8
∆2

i
log(T )

⇒N(0,1),

where ∆i > 0 is the difference between the mean of the optimal arm i∗ and that of sub-optimal arm

i, and ⇒ denotes convergence in distribution. These results can viewed as describing the typical

behavior and fluctuation of regret when T is large. This stands in contrast to the results in the

current work, which describe the tail behavior of the regret. Tails are generally affected by atypical

behavior. As noted above, our arguments show that the regret tail is impacted by trajectories on

which the algorithm mis-identifies the optimal arm. The mean and the variance in the CLT both

scale as log(T ) with the time horizon T . By analogy with the large deviations theory for sums of iid

random variables, this suggests that large deviations of regret correspond to deviations from the

expected regret that are of order log(T ). We characterize the tail of the regret beyond log1+ϵ(T )

for small ϵ > 0, and we save the analysis of deviations on the log(T ) scale for future work.

Recently, Ashutosh et al. (2021) show that for an algorithm to achieve expected regret of logarith-

mic order across a collection of bandit instances, the distributional class of arm rewards cannot be

too large. For example, if the rewards are known to be sub-Gaussian, then an upper bound restric-

tion on the variance proxy is required. They conclude that if such a restriction is mis-specified, then

the worst case expected regret could be of polynomial order. Their result provides no information

about algorithm behavior for any particular bandit instance, nor does it cover narrower classes of

distributions (e.g., Gaussian).

There is also a growing literature on risk-averse formulations of the MAB problem, with a non-

comprehensive list being: Sani et al. (2012), Maillard (2013), Zimin et al. (2014), Szorenyi et al.

(2015), Vakili and Zhao (2016), Galichet et al. (2013), Cassel et al. (2018), Tamkin et al. (2019),

Zhu and Tan (2020), Prashanth et al. (2020), Baudry et al. (2021), Khajonchotpanya et al. (2021).

As noted earlier, risk-averse formulations involve defining arm optimality using criteria other than
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the expected reward. These papers consider mean/variance criteria, value-at-risk, or conditional

value-at-risk measures, and develop algorithms which achieve good (or even optimal in some cases)

regret performance relative to their chosen criterion. Our results serve as motivation for these

papers, and highlight the need to consider robustness in many MAB problem settings.

2. Model and Preliminaries

2.1. The Multi-armed Bandit Framework

A K-armed MAB evolves within a bandit environment ν = (Q1, . . . ,QK), where each Qi is a

distribution on R. At time t, the decision-maker selects an arm A(t)∈ [K] := {1, . . . ,K} to play. The

conditional distribution of A(t) given A(1), Y (1), . . . ,A(t−1), Y (t−1) is πt(· |A(1), Y (1), . . . ,A(t−

1), Y (t−1)), where π= (πt, t≥ 1) is a sequence of probability kernels, which constitutes the bandit

algorithm (with πt defined on ([K]×R)t× 2[K]). Upon selecting the arm A(t), a reward Y (t) from

arm A(t) is received as feedback. The conditional distribution of Y (t) given A(1), Y (1), . . . ,A(t−

1), Y (t− 1),A(t) is QA(t)(·). We write Xi(t) to denote the reward received when arm i is played

for the t-th instance, so that Y (t) =XA(t)(NA(t)(t)), where Ni(t) =
∑t

s=1 I (A(s) = i) denotes the

number of plays of arm i up to and including time t.

For any time t, the interaction between the algorithm π and the environment ν induces a unique

probability Pνπ(·) on ([K]×R)∞ for which

Pνπ(A(1) = a1, Y (1)∈ dy1, . . . ,A(t) = at, Y (t)∈ dyt) =
t∏

s=1

πs(as | a1, y1, . . . , as−1, ys−1)Qas(dys).

For t≥ 1, we write Eνπ[·] to denote the expectation associated with Pνπ(·).

The quality of an algorithm π operating in an environment ν = (Q1, . . . ,QK) is measured by the

(pseudo-)regret (at time T ):

R(T ) =
K∑
i=1

Ni(T )∆i,

where ∆i = µ∗(ν) − µ(Qi) and µ∗(ν) = maxQ∈ν µ(Q). (For any distribution Q, we use µ(Q) to

denote its mean.) An arm i is called optimal if ∆i = 0, and sub-optimal if ∆i > 0. The goal in most

settings is to find an algorithm π which minimizes the expected regret Eνπ[R(T )], i.e., plays the

optimal arm(s) as often as possible in expectation.

When discussing the regret distribution tail in multi-armed settings, we will often reference (for

any given environment) the i-th-best arm (with the i-th largest mean). For each i= 1, . . . ,K, we

will use r(i) ∈ [K] to denote the index/label of the i-th-best arm. To keep our discussions and

derivations streamlined, unless specified otherwise, throughout the paper we will only consider

environments where for each i= 1, . . . ,K, the i-th-best arm is unique.
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2.2. Optimized Algorithms

In order to discuss optimized algorithms, we consider arm reward distributions from a one-

dimensional exponential family, parameterized by mean, of the form:

P z(dx) = exp
(
θP (z) ·x−ΛP (θP (z))

)
P (dx), z ∈ IP . (1)

Here, P is a base distribution with cumulant generating function (CGF) ΛP . We use IP to denote

the set of all possible means for distributions P z of the form in (1), with θP (z) being any real

number in the set ΘP = {θ ∈ R : ΛP (θ)<∞}. Moreover, for each z ∈ IP , we use θP (z) to denote

the unique value for which µ(P z) = z. (Also recall that Λ′
P (θP (z)) = z.) Throughout the paper, we

will always work with base distributions P such that ΘP contains a neighborhood of zero. For a

base distribution P , we denote the mean-parameterized model in (1) via:

MP = {P z : z ∈ IP} , (2)

which induces a class MK
P of K-armed bandit environments, where each environment consists of a

K-tuple of distributions from MP . The KL divergence between distributions in MP with means

z1, z2 ∈ IP is denoted by dP (z1, z2), and can be expressed as:

dP (z1, z2) =

∫
log

dP z1

dP z2
(x) P z1(dx)

= ΛP (θP (z2))−ΛP (θP (z1))−Λ′
P (θP (z1)) ·

(
θP (z2)− θP (z1)

)
, (3)

where dP z1/dP z2 denotes the likelihood ratio of P z1 to P z2 .

From the seminal work of Lai and Robbins (1985), there is a precise characterization of the

minimum possible growth rate of expected regret for an algorithm π designed for MK
P , which is

stated as follows. Let π be (so-called) MP -consistent, satisfying for any a > 0, any environment

ν ∈MK
P , and each sub-optimal arm i:

lim
T→∞

Eνπ[Ni(T )]

T a
= 0. (4)

(The notion of consistency rules out unnatural algorithms which over-specialize and perform very

well in particular environments within a class, but very poorly in others.) Then for any environment

ν = (P µ1 , . . . , P µK )∈MK
P and each sub-optimal arm i,

lim inf
T→∞

Eνπ[Ni(T )]

log(T )
≥ 1

dP (µi, µ∗(ν))
. (5)

We say that an MP -consistent algorithm π is MP -optimized if the lower bound in (5) is achieved,

i.e., the condition in Definition 1 holds.

Definition 1 (Optimized Algorithm). An algorithm π is MP -optimized if for any environ-

ment ν = (P µ1 , . . . , P µK )∈MK
P and each sub-optimal arm i,

lim
T→∞

Eνπ[Ni(T )]

log(T )
=

1

dP (µi, µ∗(ν))
.
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3. Characterization of the Regret Distribution Tail

3.1. Truncated Cauchy Tails

In this section, we show that for many classes of exponential family bandit environments, the tail

of the regret distribution of optimized algorithms is essentially that of a truncated Cauchy distri-

bution. Moreover, for such classes, the tail is truncated Cauchy for every environment within the

class. This is established in Theorem 1. As we will see, this truncated Cauchy tail property always

holds when the exponential family is continuous with left tails that are lighter than exponential

(possessing CGF’s that are finite on the negative half of the real line). When the exponential

family is discrete or has exponential left tails, the regret distribution tail is generally lighter than

truncated Cauchy, but still heavy and decaying at polynomial rates.

As discussed in the Introduction, the regret tail characterization that we develop here reveals

several important insights about the fragility of optimized bandit algorithms. For example, when

the regret tail is truncated Cauchy, as is generally the case for continuous exponential families,

the slightest degree of mis-specification of the marginal distribution (see Section 4.1) or serial

dependence structure (see Section 4.3) of arm rewards can cause optimized algorithms to suffer

expected regret that grows polynomially in the time horizon. Moreover, in such settings there is

no control over any higher moment of the regret beyond the first moment (see Section 4.4). It

is furthermore striking that every environment within such classes of bandit environments suffers

from these fragility issues, not just some worst case environments within such classes.

Theorem 1 relies in part on the notion of discrimination equivalence, as stated in Definition 2

below. This property can be readily verified from (3). Following the statement of the theorem, we

will provide an easier-to-verify equivalent characterization (Lemma 1) as well as simple sufficient

conditions for this property (Propositions 1 and 2). We will then explain the choice of terminology,

“discrimination equivalence”, and provide examples for intuition.

Definition 2 (Discrimination Equivalence). A distribution P is discrimination equivalent if

for any z1, z2 ∈ IP with z1 > z2,

inf
z∈IP :z<z2

dP (z, z1)

dP (z, z2)
= 1. (6)

For an algorithm π operating in an environment ν, we say that the resulting distribution of regret

R(T ) has a tail exponent of −κ if Pνπ(R(T )>x)≍ x−κ as T →∞, uniformly in x with T a ≤ x≤ cT ,

for any 0< a< 1 and suitable c > 0. Intuitively, the regret tail exponent is determined by the tail

exponent of the distribution of Nr(2)(T ), the number of plays of the second-best arm r(2). (So

it suffices to consider the tail exponent of Nr(2)(T ) when discussing the regret tail exponent.) In

Theorem 1, (7) and (8) are reflective of this intuition, since achieving logarithmic expected regret
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means the regret tail exponent cannot be greater than −1. (See Theorem 2 in Section 3.3, where

we fully establish this intuition by specializing the analysis from general optimized algorithms to

the KL-UCB algorithm.) The full proof of Theorem 1 is given in Section 6.1. In Section 3.2, we

prove a simplified version of Theorem 1, along with a discussion to highlight the intuition behind

this result. Through simulation studies (see Figures 1-3 in Section 7), we verify that the result

provides accurate approximations over reasonably short time horizons.

Theorem 1. Let π be MP -optimized. Then for any environment ν = (P µ1 , . . . , P µK ) ∈MK
P and

the i-th-best arm r(i),

lim inf
T→∞

inf
x∈Bγ(T )

logPνπ(Nr(i)(T )>x)

log(x)
≥−

i−1∑
j=1

inf
z∈IP :z<µr(i)

dP (z,µr(j))

dP (z,µr(i))
, (7)

with Bγ(T ) = [T γ , (1− γ)T ] and any γ ∈ (0,1).

If in addition, P is discrimination equivalent, then for the second-best arm r(2),

lim
T→∞

logPνπ(Nr(2)(T )>x)

log(x)
=−1 (8)

uniformly for x ∈ [T γ , (1− γ)T ] for any γ ∈ (0,1) as T →∞. Moreover, for i≥ 3, (7) holds with

the right side equal to −(i− 1).

In Lemma 1 below, we provide an equivalent characterization of discrimination equivalence. This

characterization implies that each summand on the right side of (7) is equal to −1. (Note that for

any z, z1, z2 ∈ IP with z < z2 < z1, we always have dP (z, z1)/dP (z, z2)≥ 1.) In light of the exact −1

tail exponent for the second-best arm r(2) in (8), we might conjecture that the lower bounds in

(7) are tight in general without discrimination equivalence. We will rigorously establish this fact

for a particular choice of algorithm (KL-UCB) in Section 3.3. The proof of Lemma 1 is given in

Appendix A.

Lemma 1. P is discrimination equivalent if and only if

inf ΘP =−∞, lim
θ→−∞

θΛ′
P (θ)−ΛP (θ) =∞. (9)

(Alternatively, limθ→−∞Λ∗
P (Λ

′
P (θ)) =∞, where Λ∗

P is the convex conjugate of ΛP .)

In Proposition 1, we give a simple sufficient condition for discrimination equivalence that applies

to reward distributions with support that is unbounded to the left on the real line. The requirement

is that the CGF of the distribution is finite on the negative half of the real line. In Proposition

2, we provide simple conditions to determine whether or not discrimination equivalence holds for

distributions with support that is bounded to the left on the real line. When the support is bounded

to the left, discrimination equivalence holds for continuous distributions, but generally not for

discrete distributions. The proofs of Propositions 1 and 2 can be found in Appendix A.
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Proposition 1. If the support of P is unbounded to the left, and inf ΘP = −∞, then P is dis-

crimination equivalent.

Proposition 2. If the support of P is bounded to the left with no point mass at infimum of the

support, then P is discrimination equivalent. But if there is a positive point mass at the infimum

of the support, then P is not discrimination equivalent.

It can be verified that for fixed z1 > z2,

inf
z∈IP :z<z2

dP (z, z1)

dP (z, z2)
= lim

z↓inf IP

dP (z, z1)

dP (z, z2)
. (10)

The KL divergence dP (z, z
′) can be thought of as the mean information for discriminating between

P z and P z′ , given a sample from P z. Since dP (z, z1) = dP (z, z2) if and only if z1 = z2, the ratio

dP (z, z1)/dP (z, z2) can be thought of as a measure of the difficulty of discriminating between P z

and P z1 relative to that between P z and P z2 , given a sample from P z in both cases. The greater

the relative difficulty, the closer the ratio is to 1. In such cases, as suggested by Theorem 1, the

regret tail will be heavier/closer to being truncated Cauchy. (In Theorem 2 in Section 3.3, we

provide matching upper bounds for (7) for the KL-UCB algorithm, thereby providing validation

for this way of thinking.) With this interpretation, we review in the following examples some of

the settings covered by Propositions 1 and 2 above.

Example 1. Suppose in (1) that the base distribution P is the Gaussian distribution with mean

0 and variance σ2. Then,

dP (z, z
′) =

(z− z′)2

2σ2
.

Hence, in this setting, (10) is always equal to 1, and P is discrimination equivalent.

Example 2. Suppose in (1) that the base distribution P is the uniform distribution on [0,1].

Then, the CGF is:

ΛP (θ) = log

(
eθ − 1

θ

)
.

It can be verified from the identity (3) that in this setting, (10) is always equal to 1, and so P is

discrimination equivalent.

Example 3. Suppose in (1) that the base distribution P is the Bernoulli distribution with mean

1/2. It can be verified from the identity (3) that in this setting,

lim
z↓0

dP (z, z1)

dP (z, z2)
=

log(1− z1)

log(1− z2)
.
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Hence, in this setting, (10) is always strictly greater than 1 for 0 < z2 < z1 < 1, and so P is not

discrimination equivalent.

A similar behavior arises whenever P puts positive mass at the left endpoint of its support, which

we denote by L. From the perspective of the distribution P z (which becomes a unit point mass at

L as z ↓ L), the different point masses at L associated with P z1 and P z2 can be discriminated at

different rates. Hence, in such settings, P is not discrimination equivalent.

Example 4. Suppose in (1) that the base distribution P (dx) = ex · I (x≤ 0)dx for x ∈ R, so P

is a negatively supported exponential distribution, and ΘP = (−1,∞). It can be verified from the

identity (3) that

lim
z→−∞

dP (z, z1)

dP (z, z2)
=

z2
z1
.

Hence, in this setting, (10) is always strictly greater than 1 for z2 < z1 < 0, and so P is not

discrimination equivalent. Intuitively, this behavior arises because P z1 is a scale change of P z2 (as

opposed to a location change, as in the setting of Example 1). So the ability to discriminate from

the perspective of P z (as z→−∞), differs in the two cases, regardless of how negative z is.

As noted earlier, Theorem 1 establishes under P -discrimination equivalence that the regret tail of

an MP -optimized algorithm is truncated Cauchy for every environment in MK
P . However, regard-

less of whether or not discrimination equivalence holds, there always exist some environments for

which the regret tail of optimized algorithms is arbitrarily close to being truncated Cauchy (with

a tail exponent arbitrarily close to −1). This is the content of Corollary 1 below, which follows

immediately from (7) in Theorem 1 by taking the difference µr(1) − µr(2) to be sufficiently small

and using the relevant continuity property of the ratio of KL divergences on the right side of (7).

This result highlights a universal fragility property of algorithms optimized for any exponential

family class of environments. However, compared to the fragility implications from Theorem 1

which pertain to all environments within a class, Corollary 1 is weaker as it pertains only to some

environments within a class.

Corollary 1. Let π be MP -optimized. Then for any ϵ > 0, there exists δ > 0 such that for any

environment ν = (P µ1 , . . . , P µK )∈MK
P with 0<µr(1) −µr(2) < δ,

lim inf
T→∞

inf
x∈Bγ(T )

logPνπ(Nr(2)(T )>x)

log(x)
≥−(1+ ϵ),

with Bγ(T ) = [T γ , (1− γ)T ] and any γ ∈ (0,1).
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3.2. Key Ideas Behind Theorem 1 and Further Results

Below we provide a proof of a simplified version of Theorem 1, focusing on the two-armed bandit

setting. As we will see, the key idea behind our proof is a change of measure argument in which

the reward distribution of the optimal arm is tilted so that its mean becomes less than that of

the sub-optimal arm. Then, within the new environment resulting from the change of measure, we

require control over the number of plays of the new sub-optimal arm. Proposition 3 below provides

such control through a weak law of large numbers (WLLN) for the number of sub-optimal arm

plays of optimized algorithms. Proposition 3 follows immediately for optimized algorithms due to

a “one-sided” and more general version of the result in Proposition 5 in Section 3.4.

Proposition 3. Let π be MP -optimized. Then for any environment ν = (P µ1 , . . . , P µK ) ∈ MK
P

and each sub-optimal arm i,

Ni(T )

log(T )
→ 1

dP (µi, µ∗(ν))

in Pνπ-probability as T →∞.

We will show the following simplified version of Theorem 1. Let c ∈ (0,1), and ν = (P µ1 , P µ2) ∈

M2
P such that (without loss of generality) µ1 >µ2, i.e., arm 1 is optimal in ν. For anyMP -optimized

algorithm π, we will first obtain:

lim inf
T→∞

logPνπ(N2(T )> cT )

log(T )
≥− inf

z∈IP :z<µ2

dP (z,µ1)

dP (z,µ2)
. (11)

If additionally P is discrimination equivalent, then

lim
T→∞

logPνπ(N2(T )> cT )

log(T )
=−1. (12)

Proof for (11) and (12). To obtain (11), consider a new environment ν̃ = (P µ̃1 , P µ2)∈M2
P with

µ̃1 <µ2, i.e., arm 1 is sub-optimal in ν̃. By a change of measure from ν to ν̃,

Pνπ (N2(T )> cT ) =Eν̃π

[
I (N2(T )> cT )

N1(T )∏
t=1

dP µ1

dP µ̃1
(X1(t))︸ ︷︷ ︸

:=LT (µ1, µ̃1)

]
. (13)

Note that

logLT (µ1, µ̃1) =N1(T ) ·
1

N1(T )

N1(T )∑
t=1

log
dP µ1

dP µ̃1
(X1(t)).

Under ν̃, by Proposition 3,

N1(T )

log(T )
→ 1

dP (µ̃1, µ2)
(14)
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in Pν̃π-probability as T →∞. Under ν̃, by (14) and the WLLN,

1

N1(T )

N1(T )∑
t=1

log
dP µ1

dP µ̃1
(X1(t))→−dP (µ̃1, µ1) (15)

in Pν̃π-probability as T →∞. The WLLN’s (14) and (15) then imply that for ϵ > 0,

logLT (µ1, µ̃1)≥−(1+ ϵ)
dP (µ̃1, µ1)

dP (µ̃1, µ2)
log(T ) (16)

with Pν̃π-probability converging to 1 as T →∞. Since (under ν̃) Pν̃π(N2(T )> cT )→ 1, using (13)

and (16), we obtain:

lim inf
T→∞

logPνπ(N2(T )> cT )

log(T )
≥−dP (µ̃1, µ1)

dP (µ̃1, µ2)
. (17)

Note that µ̃1 is a free variable that we can optimize over, subject to the constraints: µ̃1 < µ2 and

µ̃1 ∈ IP . Doing so yields (11). The right side of (11) equals −1 if P is discrimination equivalent. As

noted in the Introduction, for an MP -optimized algorithm π,

limsup
T→∞

logPνπ(N2(T )> cT )

log(T )
≤−1.

So if π is MP -optimized and P is discrimination equivalent, we obtain (12). □

To obtain (11), the “optimal” change of measure from ν to ν̃ in (13) essentially involves sending

µ̃1 ↓ inf IP , which can be quite extreme. For example, under the conditions of Proposition 1,

inf IP =−∞ and the optimal change of measure would involve sending the optimal arm 1 mean

µ̃1 →−∞. This suggests that the primary way that large regret arises is when the mean of the

optimal arm 1 is under-estimated to be below that of the sub-optimal arm 2, likely due to receiving

some unlucky rewards early on in the bandit experiment. Arm 1 is then mis-labeled as sub-optimal,

and the mis-labeling is not corrected for a long time, resulting in large regret.

To obtain, for example, a regret of O(T ) when the optimal arm 1 is mis-labeled as sub-optimal,

there effectively needs to be O(log(T )) unusually low rewards from arm 1. The probability of such

a scenario is exponential in the number of arm 1 plays. So the probability decays as an inverse

power of T .

One might also consider a different change of measure, where the distribution of the sub-optimal

arm 2 is tilted so that its mean is above that of the optimal arm 1. This corresponds to the scenario

where the mean of arm 2 is over-estimated to be above that of arm 1, and so arm 2 is mis-labeled

as optimal.

To obtain, for example, a regret of O(T ) when the sub-optimal arm 2 is mis-labeled as optimal,

there effectively needs to be O(T ) unusually high rewards from arm 2. The probability of such a
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scenario is exponential in the number of arm 2 plays. So the probability decays exponentially with

T .

To accompany Theorem 1, we show in Proposition 4 that large regret is not due to over-estimation

of sub-optimal arm means, but must therefore be due to under-estimation of the optimal arm

mean. The proof of Proposition 4 is given in Appendix B. (Here, we use µ̂i(t) =
1

Ni(t)

∑Ni(t)

s=1 Xi(s)

to denote the sample mean of arm i rewards up to time t.)

Proposition 4. Let π be MP -optimized. Then for any environment ν = (P µ1 , . . . , P µK ) ∈MK
P ,

any sub-optimal arm i, and any ϵ > 0,

lim
T→∞

Pνπ (|µ̂i(T )−µi| ≤ ϵ |Ni(T )>x) = 1

uniformly for x∈ [log1+γ(T ), (1− γ)T ] for any γ ∈ (0,1) as T →∞.

It is straightforward to obtain results such as (11) and (12) in multi-armed settings. To obtain

lower bounds on the distribution tail of the number of plays Nr(i)(T ) of arm r(i) (the i-th-best arm,

for i ≥ 2), we tilt the reward distributions of arms r(1), . . . , r(i− 1) so that their means become

less than that of arm r(i). We choose the new environment ν̃ with the new arm parameter values,

so that arm r(i) becomes the optimal arm. The change of measure from ν to ν̃ then results in the

product of i− 1 likelihood ratios corresponding to the arms r(1), . . . , r(i− 1). Subsequently, each

of the tilted parameter values for arms r(1), . . . , r(i− 1) can be optimized separately to yield, for

example, (7). We refer the reader to the full proof of Theorem 1 in Section 6.1.

3.3. Tail Probability Upper Bounds

In Theorem 1 from Section 3.1, we developed a lower bound (7) for the distribution tail of the

number of plays Nr(i)(T ) of the i-th-best arm r(i) (for i ≥ 2) by an optimized algorithm. In the

presence of discrimination equivalence, we showed in (8) that the tail exponent for R(T ), as deter-

mined by Nr(2)(T ), is exactly equal to −1. The lower bound part of this result is obtained using (7)

and discrimination equivalence. The upper bound part follows directly from Markov’s inequality,

as discussed in the Introduction.

However, when discrimination equivalence does not hold, the upper bound derived from Markov’s

inequality does not match the lower bounds. As part of Theorem 2, we develop refined upper

bounds for the tail of Nr(i)(T ) for all i≥ 2, for the KL-UCB algorithm (Algorithm 2 and Theorem

1 of Cappé et al. (2013)). These refined upper bounds exactly match the lower bounds in (7),

thereby providing strong evidence that the lower bounds in (7) are tight more generally, regardless

of whether or not discrimination equivalence holds. The proof of Theorem 2 is given in Section 6.2.



16

Theorem 2. Let π be MP -optimized KL-UCB. Then for any environment ν = (P µ1 , . . . , P µK ) ∈

MK
P and the i-th-best arm r(i),

lim
T→∞

logPνπ(Nr(i)(T )>x)

log(x)
=−

i−1∑
j=1

inf
z∈IP :z<µr(i)

dP (z,µr(j))

dP (z,µr(i))
(18)

uniformly for x∈ [log1+γ(T ), (1− γ)T ] for any γ ∈ (0,1) as T →∞.

From (18), we see that the tail exponents for the distributions of Nr(i)(T ), i≥ 3 are always strictly

less than that of Nr(2)(T ). So Nr(2)(T ) determines the exponent of the distribution tail of the regret

R(T ); see also Remark 1 below. Indeed, when P is discrimination equivalent, Lemma 1 implies that

the right side of (18) is exactly −(i−1) for i≥ 3, which can be compared to (8). Whenever P is not

discrimination equivalent (for example, for all discrete distributions with support bounded to the

left and strictly positive mass on the infimum of the support; see Proposition 2), the right side of

(18) is always strictly less than −1 for the second-best arm r(2). So the regret tail is always strictly

lighter than truncated Cauchy in such settings. We confirm this fact for Bernoulli environments

through numerical simulations in Figure 3 in Section 7.

This indicates that an algorithm optimized for (and operating within) an environment class MK
P ,

when P is a discrete distribution, is in general less fragile than when P is a continuous distribution.

However, recall from Corollary 1 that regardless of whether the reward distributions are discrete or

continuous, there always exist environments in MK
P for which the regret tail is arbitrarily close to

being truncated Cauchy. Optimized algorithms universally suffer from this weaker sense of fragility.

In fact, as we will see in Section 3.4, this is a key characteristic of optimized algorithms that,

together with our change of measure argument, leads to a new proof of a generalized version of the

Lai-Robbins lower bound. (See Proposition 5 and Theorem 3.)

Remark 1. In the setting of Theorem 2, the distribution tail of the regret R(T ), as determined

by that of Nr(2)(T ), depends only on the top two arm reward distributions. (In this case, the KL

divergences in (18) only involve P µr(1) and P µr(2) .) In contrast, all sub-optimal arms contribute to

the expected regret.

We also point out that (18) in Theorem 2 holds uniformly over a greater range [log1+γ(T ), (1−

γ)T ] than the range [T γ , (1 − γ)T ] of (8) in Theorem 1. As discussed in the Introduction, in

reference to the CLT’s for regret developed in Fan and Glynn (2022), the large deviations of regret

correspond to deviations from the expected regret that are of order log(T ). While we do not analyze

deviations on such a scale in this paper, we do interpolate between the log(T ) and poly-T regions

by considering the poly-log(T ) region of the regret tail. Since we simply relied on logarithmic

expected regret and Markov’s inequality in Theorem 1 to establish the upper bound part of (8),
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there we could not make conclusions about the poly-log(T ) regions. Here in Theorem 2, however,

we perform careful analysis to establish a more informative upper bound, which gives us insight

about the poly-log(T ) regions.

In Sections 4 and 5, we will frequently use the KL-UCB algorithm and general UCB algorithms

as examples to illustrate fragility issues and modifications to alleviate fragility issues. In Theorem

2 above, we characterized the regret tail of MP -optimized KL-UCB operating within environments

from MK
P , i.e., the environment is well-specified. Later in Proposition 7, we develop a result for

general UCB algorithms operating in essentially arbitrary environments, including mis-specified

ones.

3.4. Generalized Lower Bounds for Expected Regret

In Corollary 1, we saw that for any optimized algorithm, there always exist environments with very

close top arm means for which the algorithm produces regret tails that are arbitrarily close to being

(if not exactly) truncated Cauchy. This suggests that one cannot further reduce the expected regret

of an optimized algorithm (by exploring less/exploiting more) or else the regret tails will become

heavier than truncated Cauchy in such environments and violate consistency. In this section, we

make this heuristic rigorous and develop an alternative proof of a generalized version of the Lai-

Robbins lower bound for expected regret. This result, as stated in Theorem 3 below, was first

developed in Proposition 1 of Burnetas and Katehakis (1996) (by extending Theorem 2 of Lai

and Robbins (1985)). Our proof of Theorem 3, which is essentially contained in Proposition 5,

directly mirrors the proof of our main result, Theorem 1 (see Section 6.1), as discussed in Remark 2

below. Furthermore, in Proposition 6, we use this approach to develop an asymptotic lower bound

on expected regret, given an upper bound on the regret tail, which establishes a sharp trade-off

between the two.

Building on the Lai-Robbins lower bound (where the model MP is an exponential family as

in (1)-(2)), in Theorem 3, the model denoted by M is allowed to be an arbitrary collection of

distributions (possibly even finitely many) with finite means. For such an arbitrary M, an arbitrary

distribution Q, and z ∈R, we define:

Dinf(Q,z,M) = inf{D(Q ∥Q′) :Q′ ∈M, µ(Q′)> z},

where D(Q ∥Q′) denotes the KL divergence between the distributions Q and Q′, and we take the

infimum of the empty set to be +∞. Moreover, in Theorem 3, the environments in the corresponding

environment class MK are allowed to be arbitrary. The best arm(s), second-best arm(s), etc., do

not need to be unique.
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Theorem 3. Let the model M consist of an arbitrary collection of distributions with finite means.

Let π be M-consistent, i.e., π satisfies (4) for the general class MK. Then for any environment

ν = (P1, . . . , PK)∈MK and each sub-optimal arm i,

lim inf
T→∞

Eνπ[Ni(T )]

log(T )
≥ 1

Dinf(Pi, µ∗(ν),M)
. (19)

Theorem 3 follows immediately from Proposition 5 below. When M is an exponential family model

as in (1)-(2), (19) simplifies to (5). Moreover, when M is an exponential family, Proposition 5

directly implies Proposition 3. In the proof, for any distributions Q and Q′, we use dQ/dQ′ to

denote the Radon-Nikodym derivative of the absolutely continuous part of Q with respect to Q′, in

accordance with the Lebesgue decomposition of Q with respect to Q′ (see Theorem 6.10 of Rudin

(1987) for a precise statement), and we write Q≪Q′ if Q is absolutely continuous with respect to

Q′.

Proposition 5. Under the assumptions of Theorem 3, for any environment ν = (P1, . . . , PK) ∈

MK and each sub-optimal arm i,

lim
T→∞

Pνπ

(
Ni(T )

log(T )
≥ 1

Dinf(Pi, µ∗(ν),M)

)
= 1. (20)

Proof of Proposition 5. Suppose there is an environment ν̃ = (P̃1, P2, . . . , PK) ∈MK for which

(20) is false. Without loss of generality, let arm 2 be optimal (i.e., µ(P2) = µ∗(ν̃)), and suppose for

sub-optimal arm 1 there exists ϵ∈ (0,1) and a sequence of deterministic times Tn ↑∞ such that

Pν̃π

(
N1(Tn)

log(Tn)
≤ 1− ϵ

Dinf(P̃1, µ(P2),M)

)
≥ ϵ. (21)

Denote the event in (21) by An. Consider any P1 ∈M such that P̃1 ≪ P1, µ(P1)>µ(P2), and

D(P̃1 ∥P1)

Dinf(P̃1, µ(P2),M)
≤ 1+ ϵ. (22)

(Such P1 exists or else Dinf(P̃1, µ(P2),M) = ∞ and (20) would hold trivially for ν̃.) Let ν =

(P1, P2, . . . , PK) ∈MK so that arm 1 is now optimal, with P2, . . . , PK the same as in ν̃. Let δ > 0,

and define the events:

Bn =

{∣∣∣∣ 1

N1(Tn)

N1(Tn)∑
t=1

log
dP1

dP̃1

(X1(t))+D(P̃1 ∥P1)

∣∣∣∣≤ δ

}
Cn = {∃ i ̸= 1 :Ni(Tn)>Tn/(2K)}.
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By a change of measure from ν to ν̃ (with an inequality due to the possibility that P1 ̸≪ P̃1),

Pνπ(Cn)≥Eν̃π

[
I (Cn)

N1(Tn)∏
t=1

dP1

dP̃1

(X1(t))

]
(23)

≥Eν̃π

[
I (An,Bn) exp

(
1

N1(Tn)

N1(Tn)∑
t=1

log
dP1

dP̃1

(X1(t)) ·N1(Tn)

)]
(24)

≥ Pν̃π(An,Bn) · exp

(
−
(
D(P̃1 ∥P1)+ δ

)
· 1− ϵ

Dinf(P̃1, µ(P2),M)
log(Tn)

)
, (25)

where (24) follows from Cn ⊃An for large n, and (25) follows from lower bounds using An and Bn.

By Lemma 2 (in Appendix D) and the WLLN for sample means, limn→∞ Pν̃π(Bn) = 1. So from

(21), lim infn→∞ Pν̃π(An,Bn)≥ ϵ. From (25), taking logs and dividing by log(Tn), sending n→∞

followed by δ ↓ 0, and then applying (22), we obtain:

lim inf
n→∞

logPνπ(Cn)

log(Tn)
≥ lim inf

n→∞

logPν̃π(An,Bn)

log(Tn)
− (1− ϵ)

D(P̃1 ∥P1)

Dinf(P̃1, µ(P2),M)
≥−(1− ϵ2). (26)

Since ϵ∈ (0,1), this violates the M-consistency of π, and thus (21) cannot be true. □

Remark 2. As mentioned at the beginning of the current section, the proof of Proposition 5

mirrors that of the proof of Theorem 1 (in Section 6.1). Specializing Proposition 5 so that M=MP

(an exponential family model), we would have ν̃ = (P µ̃1 , P µ2 , . . . , P µK ) and ν = (P µ1 , P µ2 , . . . , P µK ),

where µ1 and µ2 are the two highest means, with µ1 > µ2 > µ̃1. Moreover, throughout the proof,

D(P̃1 ∥P1) would be replaced by dP (µ̃1, µ1), and Dinf(P̃1, µ(P2),M) by dP (µ̃1, µ2). Then, the steps

(23)-(26) mirror the steps (51)-(55) in the proof of Theorem 1. As mentioned previously, for such an

environment ν with arbitrarily close top arm means µ1 and µ2, Theorem 1 and Corollary 1 indicate

that the regret tail of an MP -optimized algorithm is arbitrarily close to being truncated Cauchy,

with exponent ≥−dP (µ̃1, µ1)/dP (µ̃1, µ2). So, for an MP -consistent algorithm π, one cannot further

reduce the expected regret in environment ν̃ beyond that of an optimized algorithm by allowing

(21) to hold, as it would cause the regret tail to be heavier than truncated Cauchy in such an

environment ν, as can be seen from (26).

Remark 3. To the best of our knowledge, there are three alternative proof techniques relevant to

Theorem 3 that exist in the current literature: Proposition 1 of Burnetas and Katehakis (1996),

Theorem 1 of Garivier et al. (2019) and Theorem 16.2 of Lattimore and Szepesvári (2020). Com-

pared to the proof of Burnetas and Katehakis (1996), our proof focuses on the heaviness of the

regret tail, with direct connections to our regret tail characterizations for optimized algorithms

(see Remark 2 above). The differences between our proof and those of Garivier et al. (2019) and

Lattimore and Szepesvári (2020) are quite pronounced. The proofs in these two works utilize
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general-purpose information-theoretic results, while we argue directly using change of measure and

lower-bounding the resulting likelihood ratio. Additionally, Kaufmann et al. (2016) (in Theorem

21) develop a similar asymptotic lower bound for expected regret using tools tailored for best-arm

identification problems. However, unlike Theorem 3 here and the results of Burnetas and Katehakis

(1996), Garivier et al. (2019) and Lattimore and Szepesvári (2020), the result in Kaufmann et al.

(2016) requires the optimal arm to be unique.

By slightly modifying the proof of Proposition 5, we obtain a generalization of that result and

of Theorem 3. The generalization, as stated in Proposition 6 below, establishes trade-off between

a lighter regret tail and a modest increase in expected regret. Here, the standard assumption of

consistency is replaced by the upper bound on the regret tail in (27). (For the case b = 0, M-

consistency implies (27).) We will refer to Proposition 6 in Section 5 when we consider modifications

of KL-UCB to obtain lighter regret tails.

Proposition 6. Let the model M consist of an arbitrary collection of distributions with finite

means, and let b≥ 0. For every environment ν = (P1, . . . , PK) ∈MK, suppose π satisfies for each

sub-optimal arm i and any γ ∈ (0,1):

limsup
T→∞

logPνπ(Ni(T )>γT )

log(T )
≤−(1+ b). (27)

Then for any such environment ν = (P1, . . . , PK)∈MK and each sub-optimal arm i,

lim inf
T→∞

Eνπ[Ni(T )]

log(T )
≥ 1+ b

Dinf(Pi, µ∗(ν),M)
. (28)

Proof of Proposition 6. We use almost the same proof of Proposition 5 to show that for any

ν = (P1, . . . , PK)∈MK and each sub-optimal arm i,

lim
T→∞

Pνπ

(
Ni(T )

log(T )
≥ 1+ b

Dinf(Pi, µ∗(ν),M)

)
= 1. (29)

The only difference is that we modify (21) to be:

Pν̃π

(
N1(Tn)

log(Tn)
≤ (1− ϵ)(1+ b)

Dinf(P̃1, µ(P2),M)

)
≥ ϵ. (30)

(In Lemma 2, the M-consistency assumption can be replaced by (27) with any b≥ 0 to yield the

same conclusion.) The modification in (30) changes (25)-(26) accordingly, and leads to violation of

(27), thus establishing (29). Then, (28) follows from (29) and Markov’s inequality. □
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4. Illustrations of Fragility

In this section, we highlight several ways in which optimized algorithms are fragile. To do so,

our main focus will be on the development of regret tail characterizations for bandit algorithms

in mis-specified settings. By mis-specified, we mean that an algorithm π is designed (possibly

optimized) for some class of environments MK , but π operates in an environment ν /∈ MK . In

real world settings, there is often some degree of mis-specification. So it is important to have some

understanding of how vulnerable an algorithm is to different forms of mis-specification.

In Section 4.1, we consider mis-specification of the marginal distributions of rewards in iid set-

tings. In Section 4.2, we develop lower bounds on the regret tail for general reward processes, which

are then applied to study mis-specification of the serial dependence structure of rewards in Section

4.3. Our analysis of mis-specification in these sections involves stylized departures from the model

assumptions built into an algorithm’s design. For example, for an algorithm optimized for environ-

ments yielding iid Gaussian rewards with a specified variance, we consider what happens to the

regret tail when the rewards are iid Gaussian, but with a variance larger than that specified in the

algorithm. In another direction, we consider what happens to the regret tail of the same algorithm

when the marginal distributions of the rewards are Gaussian with the correct variance, but the

rewards are not independent and instead evolve as AR(1) processes. Our analysis, though stylized,

reveals that optimized algorithms are highly fragile. The slightest degree of mis-specification, of

which there are many forms, can result in regret tails that are heavier than truncated Cauchy, and

thus preclude logarithmic expected regret.

To illustrate how the regret tail behaves under model mis-specification, we will focus primarily

on the KL-UCB algorithm throughout Sections 4.1-4.3. Unless specified otherwise, our theory will

be developed for MP -optimized KL-UCB for any chosen base distribution P , and operating in an

environment ν /∈MK
P . To avoid pathological/trivial situations, we will always assume that IP is an

interval (possibly infinite) that contains the range of all possible values of rewards for each arm of

the true environment ν. Of course, this ensures that the KL divergence function dP is always well-

defined when sample means of arm rewards are used as the arguments. For simplicity, in Section

4, we will always assume that the true environment ν has a unique optimal arm.

In Section 4.4, we conclude our illustrations of fragility by examining the higher moments (beyond

the first moment) of regret for optimized algorithms operating in well-specified environments.

Under the assumptions of Theorem 1, we will see that optimizing for expected regret provides no

control (uniform integrability) over any higher power of regret. Higher moments grow as powers of

the time horizon T instead of as poly-log(T ).
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4.1. Mis-specified Reward Distribution

In this section, we examine the regret tail behavior of optimized algorithms under mis-specification

of marginal reward distributions. We begin with Proposition 7, which is a characterization of the

regret tail of (possibly) mis-specified KL-UCB operating in an environment ν = (Q1, . . . ,QK), where

arm i yields independent rewards from some distribution Qi. We can compare the right side of (31)

in Proposition 7 to the right side of (18) in Theorem 2. In well-specified settings, Theorem 2 and

Proposition 7 are the same result. In mis-specified settings, which is covered by Proposition 7, the

KL divergences dQr(j)
in the numerator do not match the KL divergence dP in the denominator.

The proof of Proposition 7 is given in Appendix E. The proof uses a LLN (Proposition 8) for the

regret of (possibly) mis-specified KL-UCB, and a general tail probability lower bound (Theorem

4), which are deferred to Section 4.2. These supporting results are developed for more general

(possibly non-iid) reward processes. They are useful for establishing the results in Section 4.3, but

they are stronger than needed in the current section.

Proposition 7. Let π be MP -optimized KL-UCB. Let the environment ν = (Q1, . . . ,QK), where

arm i yields independent rewards from some distribution Qi such that its CGF ΛQi
(θ)<∞ for θ

in a neighborhood of zero. Then for the i-th-best arm r(i),

lim
T→∞

logPνπ(Nr(i)(T )>x)

log(x)
=−

i−1∑
j=1

inf
z∈IQr(j)

:z<µ(Qr(i))

dQr(j)
(z,µ(Qr(j)))

dP (z,µ(Qr(i)))
(31)

uniformly for x∈ [log1+γ(T ), (1− γ)T ] for any γ ∈ (0,1) as T →∞.

In Corollary 2 below, we show that for Gaussian KL-UCB operating in environments with iid

Gaussian rewards, if the actual variance is just slightly greater than the variance specified in the

algorithm design, then the expected regret will grow at a rate that is a power of T . The proof details

simplify significantly in this Gaussian setting, and for future reference, we provide a stand-alone

proof of Corollary 2 in Appendix E. See Figure 1 in Section 7 for numerical simulations illustrating

(32).

Corollary 2. Let π be KL-UCB optimized for iid Gaussian rewards with variance σ2 > 0. Then

for any two-armed environment ν yielding iid Gaussian rewards with actual variance σ2
0 > 0,

lim
T→∞

logPνπ(Nr(2)(T )>x)

log(x)
=−σ2

σ2
0

(32)

uniformly for x ∈ [log1+γ(T ), (1− γ)T ] for any γ ∈ (0,1) as T →∞. So if σ2
0 > σ2, then for any

a∈ (σ2/σ2
0,1],

lim inf
T→∞

Eνπ[Nr(2)(T )]

T 1−a
≥ 1.

Corollary 2 also holds with π as TS designed for iid Gaussian rewards with variance σ2 > 0 (and

with Gaussian priors on the arm means). In particular, we can obtain this result by using the

SLLN’s developed in Fan and Glynn (2022).
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4.2. Tail Probability Lower Bounds for General Reward Processes

In this section, we develop supporting results, which are needed in Section 4.3 to establish regret tail

characterizations in settings where the dependence structures of rewards are mis-specified. These

supporting results can also be used to derive the results in Section 4.1 in settings where the marginal

reward distributions are mis-specified. Proposition 8 is a SLLN for the regret of KL-UCB operating

in an environment with general (possibly non-iid) reward processes that satisfy Assumptions 1-2

below. KL-UCB is an example of an algorithm that is so-called MP -pathwise convergent, a notion

that we introduce in Definition 3 below. In Theorem 4, we apply our change-of-measure argument

to establish lower bounds for the regret tail of such algorithms when operating in an environment

with reward processes satisfying Assumptions 1-2.

We first state a few definitions and assumptions for the reward processes Xi(t), i ∈ [K], t ≥ 1

that we will work with. For each arm i and sample size n ≥ 1, define the re-scaled CGF of the

sample mean of arm rewards:

Λn
i (θ) =

1

n
log E

[
exp

(
θ ·

n∑
t=1

Xi(t)

)]
.

We will assume the following for each arm i.

Assumption 1. The limit Λi(θ) = limn→∞Λn
i (θ) exists (possibly infinite) for each θ ∈R, and 0 ∈

Θi := interior{θ ∈R : Λi(θ)<∞}.

Assumption 2. Λi(·) is differentiable throughout Θi, and either Θi =R or limm→∞
∣∣Λ′

i(θ
m)
∣∣=∞

for any sequence θm ∈Θi converging to a boundary point of Θi.

These are the conditions ensuring that the Gärtner-Ellis Theorem holds for the sample means of

arm rewards (see, for example, Theorem 2.3.6 of Dembo and Zeitouni (1998)). In the context of

Assumption 1, we refer to the limit Λi as the limiting CGF for arm i. In the context of Assumption

2, Λ′
i(0), the derivative of limiting CGF evaluated at zero, is the long-run mean reward for arm i.

Indeed, by the Gärtner-Ellis Theorem and the Borel-Cantelli Lemma,

1

n

n∑
t=1

Xi(t)→Λ′
i(0) (33)

almost surely as n→∞ for each arm i. The optimal arm r(1) is such that Λ′
r(1)(0) =maxi∈[K]Λ

′
i(0).

In the current section and in Section 4.3, we also assume for simplicity that the reward process

for each arm only evolves forward in time when the arm is played. This ensures that the serial

dependence structures of the reward processes are not interrupted in a complicated way by an

algorithm’s adaptive sampling schedule, and allows us to determine the limit in Assumption 1

for various processes of interest such as Markov chains. Regardless of the specifics of the serial
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dependence structure of rewards for each arm, we will always assume that there is no dependence

between rewards of different arms.

Before stating Proposition 8 and Theorem 4, we introduce the following notion, which can be

compared to the notion of an MP -optimized algorithm in Definition 1.

Definition 3 (Pathwise Convergent Algorithm). An algorithm π is MP -pathwise conver-

gent if for any environment ν yielding arm reward sequences Xi(t), i∈ [K], t≥ 1,{
ω : lim

n→∞

1

n

n∑
t=1

Xi(t) = ci, i∈ [K]

}
⊂
{
ω : lim

T→∞

Ni(T )

log(T )
=

1

dP (ci,maxj cj)
, ∀ i ̸= argmax

j
cj

}
. (34)

We conjecture that, in general, MP -optimized algorithms are also MP -pathwise convergent. This

is directly supported by Proposition 8 below, as well as by the SLLN developed for Gaussian TS in

Fan and Glynn (2022). It is also suggested by the analysis for developing SLLN’s for non-optimized

forced sampling-based algorithms and other UCB algorithms in Cowan and Katehakis (2019). The

proof of Proposition 8 is based on the arguments in Cowan and Katehakis (2019), and can be found

in Appendix F.

Proposition 8. MP -optimized KL-UCB is MP -pathwise convergent.

We now introduce Theorem 4, whose proof can be found in Appendix F. For arm i, we use Λ∗
i to

denote the convex conjugate of the limiting CGF Λi, and we define Ii = interior{z ∈R : Λ∗
i (z)<∞}.

As mentioned previously, to avoid pathological/trivial situations, we will always assume for each

arm i that Ii ⊂ IP for the chosen base distribution P . (We also recall that the convex conjugate

of the limiting CGF is the rate function in the Gärtner-Ellis Theorem.)

Theorem 4. Let π be MP -pathwise convergent. Let the K-armed environment ν yield rewards for

each arm that evolve according to any process satisfying Assumptions 1-2. Then for the i-th-best

arm r(i),

lim inf
T→∞

inf
x∈Bγ(T )

logPνπ(Nr(i)(T )>x)

log(x)
≥−

i−1∑
j=1

inf
z∈Ir(j) :z<Λ′

r(i)
(0)

Λ∗
r(j)(z)

dP (z,Λ′
r(i)(0))

, (35)

with Bγ(T ) = [log1+γ(T ), (1− γ)T ] and any γ ∈ (0,1).

Remark 4. Whenever we can establish a WLLN for the Ni(T ) (e.g., as in Proposition 3), then

our change-of-measure approach can be used to obtain lower bounds on the tail probabilities of

the Ni(T ) (as in Theorems 1 and 4). The almost sure convergence of the Ni(T ), as provided by

Assumptions 1-2 (leading to (33)) together with pathwise convergence (in Definition 3), is sufficient

but not necessary.
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4.3. Mis-specified Reward Dependence Structure

Even if the marginal distributions of the arm rewards are correctly specified, optimized algorithms

such as KL-UCB (designed for iid rewards) can still be susceptible to mis-specification of the serial

dependence structure. In Corollary 3, we provide a lower bound characterization of the regret tail

for Gaussian KL-UCB applied to bandits with rewards evolving as Gaussian AR(1) processes.

Specifically, for each arm i, we assume the rewards evolve as an AR(1) process:

Xi(t) = αi +βiXi(t− 1)+Wi(t), (36)

where the βi ∈ (0,1) and the Wi(t) are iid N(0, σ2
i ). The equilibrium distribution for arm i is then

N(αi/(1−βi), σ
2
i /(1−β2

i )). For simplicity, we assume that the AR(1) reward process for each arm

is initialized in equilibrium. So the marginal mean (also the long-run mean as in (33)) for arm

i is Λ′
i(0) = αi/(1 − βi). The proof of Corollary 3 follows from a straightforward verification of

Assumptions 1-2, which is omitted, and then a direct application of Theorem 4.

Corollary 3. Let π be KL-UCB optimized for iid Gaussian rewards with variance σ2 > 0. Then

for any two-armed environment ν yielding rewards that evolve as AR(1) processes (as in (36)),

lim inf
T→∞

inf
x∈Bγ(T )

logPνπ(Nr(2)(T )>x)

log(x)
≥− σ2

σ2
r(1)

(1−βr(1))
2,

with Bγ(T ) = [log1+γ(T ), (1− γ)T ] and any γ ∈ (0,1).

To see the effect of mis-specifying the dependence structure, suppose σ2
1 = σ2

2 = σ2
0 and β1 =

β2 = β0, for some σ2
0 > 0 and β0 ∈ (0,1), so that the equilibrium distributions for the rewards of

both arms are Gaussian with variance σ2
0/(1− β2

0). Then, even if we specify the same variance

σ2 = σ2
0/(1− β2

0) in Gaussian KL-UCB, so that the marginal distribution of rewards is correctly

specified, we still end up with a tail exponent that is strictly greater than −1. This is due to the

mis-specification of the serial dependence structure. Specifically, using Corollary 3,

lim inf
T→∞

logPνπ(Nr(2)(T )>T/2)

log(T )
≥−1−β0

1+β0

, (37)

and so for any a∈ ((1−β0)/(1+β0),1],

lim inf
T→∞

Eνπ[Nr(2)(T )]

T 1−a
≥ 1.

We verify (37) through numerical simulations in Figure 2 in Section 7. The simulations suggest

that the lower bound in (37) is tight.

In Corollary 4 below, we develop a characterization of the regret tail of KL-UCB operating in

an environment ν with rewards evolving as finite state Markov chains. For each arm i, we assume
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that the rewards evolve as an irreducible Markov chain on a common, finite state space S ⊂ R,
with transition matrix Hi. For any θ ∈ R and transition matrix H, we use ϕH(θ) to denote the

logarithm of the Perron-Frobenius eigenvalue of the corresponding tilted transition matrix:(
exp(θ · y)H(x, y), x, y ∈ S

)
. (38)

So in the context of Assumptions 1-2, Λi(θ) = ϕHi
(θ) for each arm i. (Note that the convex conjugate

Λ∗
i of Λi plays the same role in Corollary 4 as it does in Theorem 4.) For simplicity, we assume

that the Markov chain reward process for each arm is initialized in equilibrium. So the marginal

mean (also the long-run mean as in (33)) for arm i is Λ′
i(0) = ϕ′

Hi
(0). Lastly, we wish to ensure that

any equilibrium mean between smin :=minS and smax :=maxS can be realized through tilting the

transition matrices as in (38). This provides technical convenience, and allows us to use Chernoff-

type bounds for Markov chains from the existing literature to derive upper bounds on the regret

tail. So we introduce the following notion. We say that a transition matrix H on S satisfies the

Doeblin Condition if we have H(x, smin)> 0 for each x ̸= smin, and H(x, smax)> 0 for each x ̸= smax.

The lower bound part of Corollary 4 follows from a straightforward verification of Assumptions

1-2, which is omitted, and then a direct application of Theorem 4. To establish the upper bound

part, we can again use the proof of Theorem 2 (in Section 6.2) and substitute in, where appropriate

(in (63) and (68)), a Chernoff-type bound for additive functionals of finite-state Markov chains.

One version of such a result that is convenient for our purposes is established in Theorem 1 of

Moulos and Anantharam (2019). (Earlier and more general results can be found in Miller (1961)

and Kontoyiannis and Meyn (2003), respectively.)

Corollary 4. Let π be MP -optimized KL-UCB. Let the K-armed environment ν yield rewards

for each arm that evolve according to an irreducible Markov chain with a finite state space (with

Λi as defined above for each arm i), and suppose that the transition matrix for each arm satisfies

the Doeblin Condition. Then for the i-th-best arm r(i),

lim
T→∞

logPνπ(Nr(i)(T )>x)

log(x)
=−

i−1∑
j=1

inf
z∈Ir(j) :z<Λ′

r(i)
(0)

Λ∗
r(j)(z)

dP (z,Λ′
r(i)(0))

(39)

uniformly for x∈ [log1+γ(T ), (1− γ)T ] for any γ ∈ (0,1) as T →∞.

Example 5. For the state space S = {0,1} (binary rewards), we can examine some numerical

values for the right side of (39). Here, we take dP (z, z
′) to be the KL divergence between Bernoulli

distributions with means z and z′. We assume the arm rewards evolve as Markov chains on S. So

the marginal distributions of the arm rewards are well-specified. Suppose the best arm r(1) evolves

according to a transition matrix of the form:

Hr(1) =

[
1− q q

1−w(q) w(q)

]
. (40)
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For any q ≤ 0.8, we set w(q) ≥ 0.8 such that the chain evolving on S according to Hr(1) has

equilibrium mean equal to 0.8. Suppose also that the gap between the equilibrium means of the

top two arms, r(1) and r(2), is ∆> 0. In Table 1 below, we provide numerical values for the right

side of (39) for the case i= 2 and for different values of q and ∆. As q becomes smaller relative

to 0.8, the autocorrelation in the rewards for arm r(1) becomes more positive, and the resulting

regret distribution tail becomes heavier. As the gap ∆ shrinks, the resulting regret tail also becomes

heavier. We can see from Table 1 that it is fairly easy (for reasonable values of q and ∆) to obtain

regret tails that are heavier than truncated Cauchy (the right side of (39) is greater than −1).

∆

q w(q) 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04

0.8 0.8 -1.41 -1.37 -1.34 -1.30 -1.26 -1.23 -1.19 -1.16 -1.13
0.7 0.825 -1.06 -1.03 -1.00 -0.97 -0.95 -0.92 -0.89 -0.87 -0.84
0.6 0.85 -0.80 -0.78 -0.76 -0.74 -0.72 -0.70 -0.68 -0.66 -0.64
0.5 0.875 -0.61 -0.59 -0.58 -0.56 -0.54 -0.53 -0.51 -0.50 -0.49

Table 1 For arm rewards evolving as Markov chains on the state space S = {0,1}, and with dP being the

Bernoulli KL divergence, we provide numerical values for the right side of (39). Here, i= 2, and we consider

different values of q (as used in the best arm’s transition matrix Hr(1) in (40)) and ∆ (the gap between the

equilibrium means of the two best arms, r(1) and r(2)).

4.4. Higher Moments

In this section, we point out that the 1+ δ moment of regret for any δ > 0 must grow roughly as

T δ. Contrary to what one might conjecture in light of the WLLN that we saw in Proposition 3, the

1+ δ moment of regret is not poly-logarithmic. In Corollary 5 below, which is a direct consequence

of Theorem 1, we show that expected regret minimization does not provide any help in controlling

higher moments of regret. It forces the tail of the regret distribution to be as heavy as possible

while ensuring the expected regret scales as log(T ) (as we saw in Theorem 1 and Corollary 1).

Consequently, there is no control over the distribution tails of 1+ δ powers of regret, and thus no

uniform integrability of 1+ δ powers of regret (normalized by log1+δ(T )).

Corollary 5. Let π be MP -optimized. Suppose also that P is discrimination equivalent. Then

for any environment ν ∈MK
P , and any δ > 0 and δ′ ∈ (0, δ),

lim inf
T→∞

Eνπ[Nr(2)(T )
1+δ]

T δ′
≥ 1.
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5. Improvement of the Regret Distribution Tail

In Sections 3 and 4, we have seen how optimized algorithms prioritize expected regret minimization

at the cost of rendering the tail of the regret distribution susceptible to even small degrees of model

mis-specification. In Section 5, we discuss a general approach to make the regret tail lighter (with

a more negative tail exponent), which as we show, leads to a degree of robustness to model mis-

specification. Specifically, in Section 5.1, we describe a simple way to construct a UCB algorithm so

that the regret tail exponent is −(1+b) (or less) for any desired b > 0, for an exponential family class

of environments. We then show how this also makes the regret tail suitably lighter uniformly over

a general class of environments. In Section 5.2, we show that the modification provides protection

against mis-specification of the arm reward distributions in iid settings. In Section 5.3, we show

that such modification also provides protection against Markovian departures from independence

of the arm rewards. Our analysis further establishes an explicit trade-off between the amount of

UCB exploration (and expected regret) and the resulting heaviness of the regret tail (see Remarks

6 and 7).

5.1. A Simple Approach to Obtain Lighter Regret Tails

In this section, and in Sections 5.2 and 5.3, we focus on Algorithm 1, which is a simple modification

of the KL-UCB algorithm (Algorithm 2 of Cappé et al. (2013)). Like KL-UCB, Algorithm 1 is

defined for any exponential family MP , as in (1)-(2). However, the difference is that Algorithm 1

involves re-scaling the KL divergence dP by 1/(1 + b), for a desired b > 0. This has the effect of

inducing additional exploration, and is equivalent to increasing the “radius” of the upper confidence

bound by a factor of 1+ b; see also Remark 6 towards the end of this section.

Algorithm 1 : b-robustified KL-UCB (based on Algorithm 2 of Cappé et al. (2013))

input: b≥ 0, dP : IP ×IP → [0,∞)

initialize: Play each arm 1, . . . ,K once

for t≥K do

Play the arm (with ties broken arbitrarily):

A(t+1)= argmax
i∈[K]

sup

{
z ∈ IP :

dP (µ̂i(t), z)

1+ b
≤ log(1+ t log2(t))

Ni(t)

}
end for
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Using Algorithm 1, we can ensure that the regret tail exponent is −(1 + b) (or less) for all

environments in MK
P . This follows from a direct adaptation of Proposition 7. Specifically, with π

as Algorithm 1, we have for any environment ν = (P µ1 , . . . , P µK )∈MK
P and the i-th-best arm r(i),

lim
T→∞

logPνπ(Nr(i)(T )>x)

log(x)
=−(1+ b)

i−1∑
j=1

inf
z∈IP :z<µr(i)

dP (z,µr(j))

dP (z,µr(i))
(41)

≤−(1+ b)(i− 1)

uniformly for x ∈ [log1+γ(T ), (1− γ)T ] for any γ ∈ (0,1) as T →∞. The numerators in the infima

of (41) can be compared to those of (31) in Proposition 7. In Figure 4 in Section 7, we provide

numerical simulations that illustrate the result (41) when MP is a Gaussian family.

Furthermore, using Algorithm 1, we can ensure that the regret tail exponent is −(1+ b) (or less)

for all environments in a class MK
P,0 that is larger than MK

P . This is established in Corollary 6

below. Here, MP,0 is a general family of distributions, whose CGF’s are dominated by those of

MP :

MP,0 = {Q : µ(Q)∈ IP , ΛQ(θ)≤ΛPµ(Q)(θ) ∀ θ ∈R} . (42)

(Recall that ΛPµ(Q) is the CGF of P µ(Q), the distribution resulting from tilting P to have mean

µ(Q), as in (1).) We have the following examples of MP and MP,0.

Example 6. Let MP be the Gaussian family with variance σ2. Then MP,0 is the family of all

sub-Gaussian distributions with variance proxy σ2. (We say Z is sub-Gaussian with variance proxy

σ2 if E[eθ(Z−E[Z])]≤ eσ
2θ2/2 for all θ ∈R.)

Example 7. Let MP be the Bernoulli family. Then MP,0 is the family of all distributions sup-

ported on a subset of [0,1].

Corollary 6 follows from a direct adaptation of the proof of Proposition 7, similar to the justifi-

cation for (41). This is because the distributions in MP,0 obey the same Chernoff bounds as those

in MP , per the definition in (42).

Corollary 6. Let π be Algorithm 1, with divergence dP and b ≥ 0. Then for any environment

ν = (Q1, . . . ,QK)∈MK
P,0 and the i-th-best arm r(i),

lim
T→∞

logPνπ(Nr(i)(T )>x)

log(x)
=−(1+ b)

i−1∑
j=1

inf
z∈IQr(j)

:z<µ(Qr(i))

dQr(j)
(z,µ(Qr(j)))

dP (z,µ(Qr(i)))
(43)

≤−(1+ b)(i− 1)

uniformly for x∈ [log1+γ(T ), (1− γ)T ] for any γ ∈ (0,1) as T →∞.
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Remark 5. The −(1+b)(i−1) upper bound on (43) is due to the fact that the ratios in the infima

of (43) are at least 1. This is because for any Q∈MP,0,

dQ(z,µ(Q)) = sup
θ∈R

{θz−ΛQ(θ)}

≥ sup
θ∈R

{θz−ΛPµ(Q)(θ)}= dP (z,µ(Q)),

where the inequality follows from the definition of MP,0 in (42).

Remark 6. From (41) and (43), we see there is an explicit trade-off between the amount of

exploration and the resulting heaviness of the regret distribution tail. Specifically, using the re-

scaled divergence function dP/(1+ b) instead of dP in Algorithm 1 is equivalent to increasing the

amount of UCB exploration by 1 + b times, which for a fixed instance of bandit environment ν,

yields a regret tail exponent of −C(ν) · (1+ b), where C(ν)≥ 1 is a constant depending on ν. While

studying a related problem, Audibert et al. (2009) developed finite-time upper bounds on the tail of

the regret distribution for the UCB1 algorithm (due to Auer et al. (2002)) in the bounded rewards

setting, which are suggestive of the exploration-regret tail trade-off that we provide in (41) and

(43). However, they do not develop matching lower bounds for the regret tail. Such lower bounds

are a fundamental ingredient in establishing the nature of the trade-off.

Remark 7. As expected from Proposition 6, aiming for a lighter regret tail does come at the cost

of greater expected regret. However, the expected regret increase is modest, being only a multiple

of log(T ). And one benefit is greater robustness to model mis-specification, as we will see in the

next two sections. (As a follow-up to Corollary 6, we have a precise characterization of the expected

regret growth of Algorithm 1 in (48) of Corollary 7 in the next section.)

5.2. Robustness to Mis-specified Reward Distribution

For an MP -optimized algorithm, if the true reward distributions do not belong in MP , then the

regret tails can be heavier than truncated Cauchy, resulting in expected regret that grows as a

power of the time horizon T . As we saw in Section 4.1 via Proposition 7 and Corollary 2, one

example of this is when the variance in the design of KL-UCB for Gaussian bandits is just slightly

under-specified relative to the true variance. To alleviate such issues, we can use Algorithm 1. We

will see in Corollary 7 below that this provides protection against distributional mis-specification

of the arm rewards. In particular, we can maintain logarithmic expected regret for environments

from an enlarged class MK
P,b, which is defined in (44) below and depends on the chosen value of

b > 0 in Algorithm 1.

The enlarged family of distributions is:

MP,b = {Q : µ(Q)∈ IP , ΛQ(θ)≤ΨP,b(µ(Q), θ) ∀ θ ∈R} , (44)
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where for any distribution Q and z ∈ IQ, we define:

ΨQ,b(z, θ) =
ΛQz((1+ b)θ)

1+ b
, θ ∈R. (45)

Setting b= 0 recovers MP,0 as in (42). Using Jensen’s inequality and the definition in (45), it is

straightforward to see thatMP ⫋MP,b for b > 0. Moreover, withMP,0 from (42) and any b′ > b> 0,

we have MP,0 ⫋MP,b ⫋MP,b′ . An example of MP and MP,b is the following.

Example 8. Let MP be the Gaussian family with variance σ2. Then MP,b is the family of all sub-

Gaussian distributions with variance proxy σ2(1+ b). (Also, MP,0 is the family of all sub-Gaussian

distributions with variance proxy σ2, as we saw in Example 6.)

Remark 8. Algorithm 1 uses the divergence dP re-scaled by 1/(1+ b). This is directly related to

the re-scaled CGF’s in (45), namely y 7→ dP (y, z)/(1+ b) is the convex conjugate of θ 7→ΨP,b(z, θ),

as seen via:

dP (y, z)

1+ b
=

1

1+ b
· sup
θ∈R

{θy−ΛP z(θ)}= sup
θ∈R

{θy−ΨP,b(z, θ)}. (46)

In Corollary 7, (47) can be obtained by using a straightforward adaptation of the proof of

Theorem 10.6 in book by Lattimore and Szepesvári (2020). The proof there is developed for KL-

UCB in the iid Bernoulli rewards setting. However, the proof can be directly extended to cover

KL-UCB for any exponential family by using a Chernoff bound based on the KL divergence for that

family. Moreover, the proof can be directly adapted to our setting in Corollary 7 using dP/(1+b) as

the divergence in the Chernoff bound. Due to (44)-(46), the distributions in MP,b obey a Chernoff

bound that involves the re-scaled divergence dP/(1 + b). Then, (48) follows from Corollary 6 and

Proposition 6.

Corollary 7. Let π be Algorithm 1, with divergence dP and b ≥ 0. Then for any environment

ν = (Q1, . . . ,QK)∈MK
P,b and each sub-optimal arm i,

limsup
T→∞

Eνπ [Ni(T )]

log(T )
≤ 1+ b

d(µ(Qi), µ∗(ν))
. (47)

Moreover, for any environment ν = (Q1, . . . ,QK)∈MK
P,0 and each sub-optimal arm i,

lim
T→∞

Eνπ [Ni(T )]

log(T )
=

1+ b

d(µ(Qi), µ∗(ν))
. (48)

5.3. Robustness to Mis-specified Reward Dependence Structure

In this section, we consider arm rewards taking values in a finite set S ⊂R. Let P be a distribution

on S. Even if the marginal distributions of arm rewards belong in the exponential family MP ,

the serial dependence structure of rewards could be mis-specified, which can result in regret tails
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that are heavier than truncated Cauchy, and expected regret that grows as a power of the time

horizon T . We saw an example of this in Section 4.3 via Corollary 4, particularly via Example 5.

To alleviate such issues, we use Algorithm 1. We will see in Corollary 8 below that this provides

protection against Markovian departures from independence of the arm rewards. In particular, we

can maintain logarithmic expected regret when the arm rewards evolve as Markov chains with

transition matrices from a set M̃P,b, which is defined in (49) below and depends on the chosen

value of b≥ 0 in Algorithm 1.

Let S|S| denote the set of |S|×|S| irreducible stochastic matrices satisfying the Doeblin Condition

(as discussed in Section 4.3 in the context of Corollary 4). We define

M̃P,b =
{
H ∈ S|S| : ϕH(θ)≤ΨP,b(ϕ

′
H(0), θ) ∀ θ ∈R

}
, (49)

and we recall that ϕH(θ) is the logarithm of the Perron-Frobenius eigenvalue of the tilted version

(as in (38)) of transition matrix H, and ϕ′
H(0) is the equilibrium mean of a chain with transition

matrix H. Of course, the exponential family MP is equivalent to a strict subset of the collection of

transition matrices with identical rows in M̃P,b, for any b > 0. Also, for any b′ > b> 0, M̃P,b ⫋ M̃P,b′ .

In Example 9, which is given after Corollary 8, we examine the degree to which M̃P,b is “larger”

than MP when S = {0,1} and MP is the Bernoulli family.

We have Corollary 8 below, which (like Corollary 7) can also be obtained by using a straightfor-

ward adaptation of the proof of Theorem 10.6 in Lattimore and Szepesvári (2020) (using dP/(1+b)

as the divergence). Theorem 1 of Moulos and Anantharam (2019) provides a Chernoff bound for

additive functionals of finite state space Markov chains that is convenient for this purpose. (As

mentioned previously, earlier and more general results can be found in Miller (1961) and Kon-

toyiannis and Meyn (2003), respectively.) Due to (49) and (45)-(46), Markov chains with transition

matrices in M̃P,b obey this Chernoff bound, which involves the re-scaled divergence dP/(1+ b).

Corollary 8. Let π be Algorithm 1, with divergence dP and b≥ 0. For the K-armed environment

ν, suppose arm i yields rewards that evolve according to a Markov chain with transition matrix

Hi ∈ M̃P,b. Then for any sub-optimal arm i,

limsup
T→∞

Eνπ [Ni(T )]

log(T )
≤ 1+ b

dP (ϕ′
Hi
(0), ϕ′

Hr(1)
(0))

.

Example 9. Let the state space S = {0,1}, and let MP be the Bernoulli family of distributions.

Consider transition matrices on S of the form:

H =

[
1− q q
1− q′ q′

]
. (50)
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The more positive the difference q′− q, the more positive the autocorrelation between the rewards.

In Table 2 below, for different values of b > 0, we examine how positive the difference q′− q can be

in order for H to still belong in M̃P,b, and thus for Corollary 8 to be applicable. As the targeted

regret tail exponent −(1 + b) is made more negative, the algorithm can withstand more positive

autocorrelation between the rewards and still maintain logarithmic expected regret.

−(1+ b) -2 -3 -4 -5 -6 -7 -8 -9 -10 -11
max allowed q′ − q 0.18 0.36 0.49 0.59 0.65 0.70 0.74 0.77 0.80 0.82

Table 2 For particular −(1+ b) values (upper bound on the regret tail exponent), and for the restriction

q, q′ ∈ [0.05,0.95], we give the maximum allowed difference q′ − q that ensures the transition matrix H in (50)

belongs in M̃P,b, as defined in (49) (and (45)).

Remark 9. For general reward processes satisfying Assumptions 1-2, e.g., general Markov pro-

cesses, there are no finite-sample concentration bounds. So there does not seem to be a universal

way to obtain an upper bound on the regret tail to complement the lower bound in Theorem 4

(unlike in Proposition 7 and Corollary 4). For such reward processes, there also does not seem to

be a universal way to obtain upper bounds on expected regret such as in Corollary 8, and thus

there are no provable robustness benefits for our procedure to lighten the regret tail. Nevertheless,

our simulations in Figure 5 in Section 7 suggest that we can still ensure the regret tail is lighter to

a desired level using our procedure. (The lower bound in Theorem 4 seems to be tight in greater

generality than what we are able to provably show.)

6. Proofs of Theorems 1 and 2

6.1. Proof of Theorem 1

Without loss of generality, suppose that µ1 > µ2 > · · · > µK (i.e., r(i) = i for all i ∈ [K]) in the

environment ν = (P µ1 , P µ2 , . . . , P µK ). We first show (7) and (8) for second-best arm i= 2. Consider

the alternative environment ν̃ = (P µ̃1 , P µ2 , . . . , P µK ), where µ̃1 < µ2, and µ2, . . . , µK are the same

mean values from the original environment ν. (Arm 2 is the best arm in ν̃.) Later in the proof,

we will consider different values for µ̃1, subject to µ̃1 < µ2 and µ̃1 ∈ IP . Let δ > 0, and define the

events:

AT =

{∣∣∣∣N1(T )

log(T )
− 1

dP (µ̃1, µ2)

∣∣∣∣≤ δ

}
∩
{∣∣∣∣Nj(T )

log(T )
− 1

dP (µj, µ2)

∣∣∣∣≤ δ, ∀ j ≥ 3

}
BT =

{∣∣∣∣∣ 1

N1(T )

N1(T )∑
t=1

log
dP µ1

dP µ̃1
(X1(t))+ dP (µ̃1, µ1)

∣∣∣∣∣≤ δ

}
.
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By a change of measure from ν to ν̃,

Pνπ(N2(T )> (1− γ)T ) =Eν̃π

[
I (N2(T )> (1− γ)T )

N1(T )∏
t=1

dP µ1

dP µ̃1
(X1(t))

]
(51)

≥Eν̃π

[
I (AT ,BT ) exp

(
1

N1(T )

N1(T )∑
t=1

log
dP µ1

dP µ̃1
(X1(t)) ·N1(T )

)]
(52)

≥ Pν̃π(AT ,BT ) · exp
(
− (dP (µ̃1, µ1)+ δ)

(
1

dP (µ̃1, µ2)
+ δ

)
log(T )

)
. (53)

where (52) follows from {N2(T )> (1− γ)T} ⊃ AT for sufficiently large T , and (53) follows from

lower bounds using AT and BT . From (53), taking logs and dividing by log(T ),

logPνπ(N2(T )> (1− γ)T )

log(T )
≥ logPν̃π(AT ,BT )

log(T )
− (dP (µ̃1, µ1)+ δ)

(
1

dP (µ̃1, µ2)
+ δ

)
. (54)

Using Proposition 3 together with the WLLN for sample means, we have limT→∞ Pν̃π(AT ,BT ) = 1.

So the first term on the right side of (54) is negligible as T → ∞, and upon sending δ ↓ 0 and

optimizing with respect to µ̃1, we have

lim inf
T→∞

logPνπ(N2(T )> (1− γ)T )

log(T )
≥− inf

µ̃1∈IP : µ̃1<µ2

dP (µ̃1, µ1)

dP (µ̃1, µ2)
. (55)

The conclusion (7) holds with the infimum over Bγ(T ) = [T γ , (1−γ)T ] due to x 7→ logPνπ(N2(T )>

x)/ log(x) being monotone decreasing for x∈Bγ(T ), with T fixed.

We now establish (8). Because P is discrimination equivalent, the right side of (55) is equal to −1.

Because π is MP -optimized, using Markov’s inequality, the case x= (1−γ)T in (8) is established,

i.e.,

lim
T→∞

logPνπ(N2(T )> (1− γ)T )

log((1− γ)T )
=−1. (56)

To obtain the uniform result for x∈ [T γ , (1− γ)T ], note that for T > T γ/(1− γ),

Pνπ(N2(T )>T γ)≥ Pνπ(N2(⌈T γ/(1− γ)⌉)>T γ). (57)

Using (56), but with ⌈T γ/(1− γ)⌉ in the place of T , together with Markov’s inequality (with π

being MP -optimized),

lim
T→∞

logPνπ(N2(⌈T γ/(1− γ)⌉)>T γ)

log(T γ)
=−1.

Thus, using (57) and Markov’s inequality (with π being MP -optimized), the case x= T γ in (8) is

established, i.e.,

lim
T→∞

logPνπ(N2(T )>T γ)

log(T γ)
=−1. (58)
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Since, for each T , x 7→ logPνπ(N2(T )>x)/ log(x) is a monotone decreasing function for x> 1, the

desired uniform convergence in (8) for x ∈ [T γ , (1− γ)T ] follows from the matching limits at the

endpoints x= (1− γ)T and x= T γ , as established in (56) and (58), respectively.

We now show (7) for sub-optimal arm i ≥ 3. Consider the alternative environment ν̃ =

(P µ̃1 , . . . , P µ̃i−1 , P µi , . . . , P µK ), where µ̃j < µi for all j ≤ i− 1, and µi, . . . , µK are the same mean

values from the original environment ν. (Arm i is now the best arm in ν̃.) The events AT and BT

become:

AT =

{∣∣∣∣Nj(T )

log(T )
− 1

dP (µ̃j, µi)

∣∣∣∣≤ δ, ∀ j ≤ i− 1

}
∩
{∣∣∣∣Nj(T )

log(T )
− 1

dP (µj, µi)

∣∣∣∣≤ δ, ∀ j ≥ i+1

}

BT =


∣∣∣∣∣∣ 1

Nj(T )

Nj(T )∑
t=1

log
dP µj

dP µ̃j
(Xj(t))+ dP (µ̃j, µj)

∣∣∣∣∣∣≤ δ, ∀ j ≤ i− 1

 .

To obtain (7) for sub-optimal arm i≥ 3, we can then run through arguments analogous to those in

(51)-(55). Here, the change of measure from ν to ν̃ involves the product of i− 1 likelihood ratios

corresponding to the arms 1, . . . , i− 1. Each of the parameter values µ̃1, . . . , µ̃i−1 can be optimized

separately (subject to µ̃j <µi and µ̃j ∈ IP for all j ≤ i− 1) to yield the desired conclusion. □

6.2. Proof of Theorem 2

Without loss of generality, suppose that µ1 >µ2 > · · ·>µK (i.e., r(i) = i for all i∈ [K]). Define for

arm i the KL-UCB index at time t, given that arm i has been played n times:

Ũi(n, t) = sup

{
z ∈ IP : dP (µ̂i(τi(n)), z)≤

f(t)

n

}
,

where τi(n) denotes the time of the n-th play of arm i, and as defined previously, µ̂i(t) =

1
Ni(t)

∑Ni(t)

s=1 Xi(s). Here, we use the choice f(t) = log(t), where (as in Algorithm 2 of Cappé et al.

(2013)) the “exploration function” f(t) is a design choice. Section 7 of Cappé et al. (2013) rec-

ommends using this particular choice of f(t). Moreover, our proof below can easily accommodate

other choices such as f(t) = log(t) + 3 log log(t) (used in Theorem 1 of Cappé et al. (2013)), or

f(t) = log(1+ t log2(t)) (used in Theorem 10.6 of Lattimore and Szepesvári (2020)). Using any one

of these variations of f(t) does not affect the conclusion of our Theorem 2.

We first show (18) for the sub-optimal arm i = 2. Let xT =
⌊
log1+γ(T )

⌋
with fixed γ ∈ (0,1).

Also, let δ ∈ (0, µ1 −µ2). We have the following bounds:

Pνπ (N2(T )>xT )≤ Pνπ

(
∃ t∈ (τ2(xT ), T ] s.t. Ũ1(N1(t− 1), t− 1)≤ Ũ2(N2(t− 1), t− 1)

)
(59)

≤ Pνπ

(
∃ t∈ (xT , T ] s.t. Ũ1(N1(t− 1), xT )≤ Ũ2(xT , T )

)
≤ Pνπ

(
∃ t∈ (xT , T ] s.t. Ũ1(N1(t− 1), xT )≤ µ2 + δ

)
(60)

+Pνπ

(
Ũ2(xT , T )>µ2 + δ

)
. (61)
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Note that (59) holds because N2(T )> xT is the event of interest, and so after the xT -th play of

arm 2 at time τ2(xT ), there must be at least one more time period in which arm 2 is played.

For the term in (60), we have

(60)≤
∞∑

m=1

Pνπ

(
Ũ1(m,xT )≤ µ2 + δ

)
(62)

=
∞∑

m=1

Pνπ

(
dP (µ̂1(τ1(m)), µ2 + δ)≥ log(xT )

m
, µ̂1(τ1(m))≤ µ2 + δ

)

=
∞∑

m=1

Pνπ

(
1

m

m∑
l=1

X1(l)≤ y∗
m

)

≤
∞∑

m=1

exp (−m · dP (y∗
m, µ1)) , (63)

where for each m, y∗
m is the unique solution to dP (y

∗
m, µ2 + δ) = log(xT )/m and y∗

m < µ2 + δ, and

we have used a large deviations upper bound in (63). We define

sT =
2 log(xT )

dP (µ2 + δ,µ1)
· inf
z<µ2+δ

dP (z,µ1)

dP (z,µ2 + δ)
,

and so for m≥ sT ,

dP (µ2 + δ,µ1)

2
≥ log(xT )

m
· inf
z<µ2+δ

dP (z,µ1)

dP (z,µ2 + δ)
.

Since y∗
m <µ2 + δ, we have dP (y

∗
m, µ1)≥ dP (µ2 + δ,µ1), and so for m≥ sT ,

dP (y
∗
m, µ1)≥

log(xT )

m
· inf
z<µ2+δ

dP (z,µ1)

dP (z,µ2 + δ)
+

dP (µ2 + δ,µ1)

2
. (64)

Splitting the sum in (63) into two pieces at ⌊sT ⌋, we have

(63) =

⌊sT ⌋∑
m=1

exp

(
−m · dP (y∗

m, µ2 + δ) · dP (y
∗
m, µ1)

dP (y∗
m, µ2 + δ)

)
+

∞∑
m=⌊sT ⌋+1

exp (−m · dP (y∗
m, µ1))

≤
⌊sT ⌋∑
m=1

exp

(
−m · log(xT )

m
· inf
z<µ2+δ

dP (z,µ1)

dP (z,µ2 + δ)

)
(65)

+
∞∑

m=⌊sT ⌋+1

exp

(
−m ·

(
log(xT )

m
· inf
z<µ2+δ

dP (z,µ1)

dP (z,µ2 + δ)
+

dP (µ2 + δ,µ1)

2

))
(66)

= x
− inf

z<µ2+δ

dP (z,µ1)

dP (z,µ2+δ)

T ·

⌊sT ⌋+
∞∑

m=⌊sT ⌋+1

exp

(
−m · dP (µ2 + δ,µ1)

2

) . (67)

In (65), we use the fact that dP (y
∗
m, µ2 + δ) = log(xT )/m. In (66), we use (64) (for m≥ sT ).
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For the term in (61), since limT→∞ f(T )/xT = 0, we have for sufficiently large T ,∣∣∣Ũ2(xT , T )− µ̂2(τ2(xT ))
∣∣∣< δ

2
.

So for sufficiently large T ,

(61)≤ Pνπ

(
1

xT

xT∑
l=1

X2(l)>µ2 +
δ

2

)
≤ exp

(
−xT ·Λ∗

Pµ2 (µ2 + δ/2)
)
, (68)

where Λ∗
Pµ2 is the large deviations rate function for P µ2 .

Using (60) and (67) together with (61) and (68), we have

limsup
T→∞

logPνπ (N2(T )>xT )

log(xT )
≤− inf

z<µ2+δ

dP (z,µ1)

dP (z,µ2 + δ)
. (69)

From the argument included separately in Appendix C,

lim
δ↓0

inf
z<µ2+δ

dP (z,µ1)

dP (z,µ2 + δ)
= inf

z<µ2

dP (z,µ1)

dP (z,µ2)
. (70)

Recall we also have the lower bound:

lim inf
T→∞

logPνπ (N2(T )> (1− γ)T )

log((1− γ)T )
≥− inf

z<µ2

dP (z,µ1)

dP (z,µ2)
, (71)

as established in the proof of Theorem 1. For the case i= 2, the convergence:

lim
T→∞

logPνπ (Ni(T )>x)

log(x)
=−

i−1∑
j=1

inf
z<µi

dP (z,µj)

dP (z,µi)
(72)

at the endpoints x = xT and x = (1− γ)T follows from the upper bound in (69)-(70), the lower

bound in (71), together with the monotonicity of the function x 7→ logPνπ (N2(T )>x)/ log(x)

(for any fixed T ). The uniform convergence in (72) for x ∈ [xT , (1− γ)T ] follows from the same

monotonicity property.

We now show (18) for sub-optimal arm i≥ 3. Let δ ∈ (0, µi−1−µi). In place of (60) and (61), we

now have

Pνπ (Ni(T )>xT )≤ Pνπ

(
∃ t∈ (xT , T ] s.t. max

j : j≤i−1
Ũj(Nj(t), xT )≤ µi + δ

)
(73)

+Pνπ

(
Ũi(xT , T )>µi + δ

)
. (74)

We can bound (73) via:

(73)≤ Pνπ

(
∀ j ≤ i− 1, ∃mj ∈Z+ s.t. Ũj(mj, xT )≤ µi + δ

)
≤

i−1∏
j=1

∞∑
m=1

Pνπ

(
Ũj(m,xT )≤ µi + δ

)
, (75)
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where (75) follows from the independence of the rewards from different arms. We can then upper

bound each term in the product of (75) in the same way as (62). We can upper bound (74) in the

same way as (61), and thus show that it is negligible as T →∞. Following the rest of the argument

above (which was for the case i= 2), we eventually obtain (due to the product structure in (75)):

limsup
T→∞

logPνπ (Ni(T )>xT )

log(xT )
≤−

i−1∑
j=1

inf
z<µi

dP (z,µj)

dP (z,µi)
. (76)

For sub-optimal arm i≥ 3, we also have the lower bound:

lim inf
T→∞

logPνπ (Ni(T )> (1− γ)T )

log((1− γ)T )
≥−

i−1∑
j=1

inf
z<µi

dP (z,µj)

dP (z,µi)
, (77)

as established in the proof of Theorem 1. For sub-optimal arm i≥ 3, the convergence in (72) at

the endpoints x= xT and x= (1− γ)T follows from the upper bound in (76), the lower bound in

(77), together with the monotonicity of the function x 7→ logPνπ (Ni(T )>x)/ log(x) (for any fixed

T ). The uniform convergence in (72) for x ∈ [xT , (1 − γ)T ] follows from the same monotonicity

property. □

7. Numerical Experiments

In this section, we use numerical experiments to verify that our asymptotic approximations for the

regret distribution tail hold over finite time horizons.

In Figure 1, we examine the validity of Theorem 1 and Corollary 2. For all curves but the dark

blue one, the variance of the Gaussian KL-UCB algorithm is set smaller than that of the actual

Gaussian reward distributions. In Figure 2, we examine the validity of Corollary 3. For all curves

but the dark blue one, the Gaussian KL-UCB algorithm does not take into account the AR(1)

serial dependence structure of the rewards, even though the algorithm is perfectly matched to

the marginal distributions of the rewards. In both Figures 1 and 2, the regret tail probabilities in

mis-specified cases correspond to regret distribution tails that are heavier than truncated Cauchy.

In Figure 3, we verify that when the arms are iid Bernoulli, KL-UCB produces regret distribution

tails which are strictly lighter than truncated Cauchy, as predicted by Theorem 2.

In Figure 4, we demonstrate the trade-off between the amount of UCB exploration (in Algorithm

1) and the resulting exponent of the regret distribution tail, as established in (41) and described

in Remark 6.

In Figure 5, we demonstrate that the poor regret tail properties resulting from mis-specification

of the serial dependence structure of the rewards can be overcome by aiming for a lighter regret tail

using Algorithm 1. Here, we use the same AR(1) setup that is illustrated in Figure 2. As discussed

in the first paragraph of Remark 9, here we do not have upper bounds on regret tail probabilities
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Figure 1 Plot of logPνπ(N2(T ) ≥ 0.8T )/ log(T ) vs T . Environment ν = (N(0.1, σ2
0),N(0, σ2

0)). Algorithm π is

KL-UCB for iid unit-variance Gaussian rewards. The curves correspond to the cases σ2
0 = 1,1.5, . . . ,4,

as indicated by the legend. The curves asymptote to −1/σ2
0 in each case, which agrees with Corollary

2 and (32).

Figure 2 Plot of logPνπ(N2(T )≥ 0.8T )/ log(T ) vs T . Environment ν consists of two Gaussian AR(1) processes

with common AR coefficient β0, and equilibrium distributions (N(0.1,1),N(0,1)). Algorithm π is KL-

UCB for iid unit-variance Gaussian rewards. The curves correspond to the cases β0 = 0,0.15, . . . ,0.9, as

indicated by the legend. The curves approximately asymptote to −(1−β0)/(1+β0), which agrees with

the lower bound in Corollary 3 and (37).

(only lower bounds in (37)), and thus there are no provable robustness guarantees. However, we

show empirically in Figure 5 that aiming for a lighter regret tail still provides robustness to mis-

specification in this setting. The 1+β0
1−β0

factor in Figure 5 is taken from the lower bound in (37),

which we essentially confirm to be tight here.

Appendix A: Proofs for Section 3.1

For the proofs in Appendix A, we will work with the natural parameterization of the exponential

family in (1):

Pθ(dx) = exp(θ ·x−ΛP (θ))P (dx), θ ∈ΘP . (78)
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Figure 3 Plot of logPνπ(N2(T ) > x)/ log(x) vs x for x ∈ [0.05T,0.95T ] (with time horizon T fixed). Envi-

ronment ν = (Ber(q),Ber(0.4)). Algorithm π is KL-UCB for iid Bernoulli rewards. Top: q = 0.475,

T = 104; Middle: q = 0.5, T = 5 × 103; Bottom: q = 0.525, T = 3.4 × 103. Each curve asymptotes to

limz↓0 dP (z, q)/dP (z,0.4) (with values −1.26 (top), −1.36 (middle), −1.46 (bottom)), as specified by

Theorem 2 and (10).

Figure 4 Plot of logPνπ(N2(T ) > x)/ log(x) vs x for x ∈ [0.05T,0.95T ], with fixed time horizon T = 7 × 103.

Environment ν = (N(0.1,1),N(0,1)). π is Algorithm 1 with KL divergence dP between unit-variance

Gaussian distributions, and we aim for a regret tail exponent of −(1+ b). The curves correspond to the

cases b= 0,0.25,0.5,0.75, as indicated by the legend. As predicted by (41), the curves asymptote to −1,

−1.25, −1.5, −1.75.
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Figure 5 Plot of logPνπ(N2(T ) > x)/ log(x) vs x for x ∈ [0.05T,0.95T ], with fixed time horizon T = 104. Envi-

ronment ν consists of two Gaussian AR(1) processes with common AR coefficient β0, and equilibrium

distributions (N(0.1,1),N(0,1)). π is Algorithm 1 with KL divergence dP between unit-variance Gaus-

sian distributions, and 1 + b = 1.1 · 1+β0
1−β0

(to aim for a regret tail exponent of ≈ −1.1 in each case of

β0). The curves correspond to the cases β0 = 0,0.15,0.3,0.45, as indicated by the legend. All curves

asymptote to (slightly less than) −1.1, as desired.

Then the KL divergence between distributions Pθ1 and Pθ2 has the expression:

D(Pθ1 ∥Pθ2) = ΛP (θ2)−ΛP (θ1)−Λ′
P (θ1) · (θ2 − θ1). (79)

Proof of Lemma 1. First of all, the definition of discrimination equivalence as expressed in (6)

for the exponential family with base distribution P parameterized by mean (as in (1)) is equivalent

to the following statement for the same exponential family with natural parameterization (as in

(78)). For any θ1, θ2 ∈ΘP with θ1 > θ2,

inf
θ∈ΘP :θ<θ2

D(Pθ ∥Pθ1)

D(Pθ ∥Pθ2)
= 1. (80)

We first show the forward direction, that (80) implies (9). Suppose inf ΘP >−∞. Note that (80)

implies that for any fixed θ0 > inf ΘP ,

lim
θ↓inf ΘP

D(Pθ ∥Pθ0) = lim
θ↓inf ΘP

ΛP (θ0)−ΛP (θ)−Λ′
P (θ) · (θ0 − θ) =∞.

Then taking θ0 arbitrarily close to inf ΘP , we must have

lim
θ↓inf ΘP

ΛP (θ)+ ϵΛ′
P (θ) =−∞ (81)

for any ϵ > 0. Because inf ΘP >−∞, (81) implies that

lim
θ↓inf ΘP

Λ′
P (θ) =−∞, (82)

since ΛP is strictly convex and Λ′
P is strictly increasing on ΘP . Since

lim
θ↓inf ΘP

ΛP (θ)>−∞,
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(81)-(82) imply that

lim
θ↓inf ΘP

∣∣∣∣ΛP (θ)

Λ′
P (θ)

∣∣∣∣= 0.

So for any θ1, θ2 fixed with θ1 > θ2 > inf ΘP , we have

lim
θ↓inf ΘP

D(Pθ ∥Pθ1)

D(Pθ ∥Pθ2)
= lim

θ↓inf ΘP

Λ′
P (θ) · (θ1 − θ)

Λ′
P (θ) · (θ2 − θ)

=
θ1 − inf ΘP

θ2 − inf ΘP

> 1,

which contradicts (80) if inf ΘP >−∞. Hence, it must be that inf ΘP =−∞.

Now suppose that

lim
θ→−∞

θΛ′
P (θ)−ΛP (θ)<∞. (83)

Again, consider two the possible cases:

1. limθ→−∞Λ′
P (θ) =−∞

2. limθ→−∞Λ′
P (θ)>−∞.

In the first case, (80) cannot hold because (83) implies (for θ1 > θ2):

lim
θ→−∞

D(Pθ ∥Pθ1)

D(Pθ ∥Pθ2)
= lim

θ→−∞

Λ′
P (θ)θ1

Λ′
P (θ)θ2

=
θ1
θ2

̸= 1.

In the second case, (80) cannot hold because (83) then implies that limθ→−∞D(Pθ ∥Pθ0)<∞ for

any θ0 ∈ΘP . So it must be that

lim
θ→−∞

θΛ′
P (θ)−ΛP (θ) =∞.

Thus, the forward direction is established.

We now show the reverse direction, that (9) implies (80). For any θ1, θ2 ∈ΘP fixed with θ1 > θ2,

inf
θ∈ΘP :θ<θ2

D(Pθ ∥Pθ1)

D(Pθ ∥Pθ2)
≥ 1.

There are two possible cases:

1. limθ→−∞Λ′
P (θ) =−∞

2. limθ→−∞Λ′
P (θ)>−∞.

In the first case, note that for any fixed non-zero θ0, we have

lim
θ→−∞

θ0Λ
′
P (θ)

θΛ′
P (θ)−ΛP (θ)

= lim
θ→−∞

θ0
θ
= 0.

And if θ0 = 0, then of course the same limit result holds. So (9) implies that

lim
θ→−∞

D(Pθ ∥Pθ1)

D(Pθ ∥Pθ2)
= lim

θ→−∞

θΛ′
P (θ)−ΛP (θ)

θΛ′
P (θ)−ΛP (θ)

= 1. (84)

In the second case, (9) directly implies (84). Thus, the reverse direction is established. □



43

Proof of Proposition 1. Since inf ΘP =−∞ and the support of the distributions is unbounded

to the left (i.e., there is always positive probability mass to the left of any point on the real line),

as we send θ to −∞, the mean µ(Pθ) = Λ′
P (θ) must also go to −∞. By the definition of the convex

conjugate Λ∗
P , we have for any θ ∈ΘP ,

Λ∗
P (z)≥ θ · z−ΛP (θ),

which implies for θ < 0 that

lim
z→−∞

Λ∗
P (z) =∞.

Also note that for any θ ∈ΘP ,

Λ∗
P (Λ

′
P (θ)) = θ ·Λ′

P (θ)−ΛP (θ).

So using limθ→−∞Λ′
P (θ) =−∞ yields the desired result. □

Proof of Proposition 2. Let X be a random variable with distribution P . We first address the

case where the distributions assign no mass to the (finite) infimum of their support, which we

denote by L. For some l > L with l−L small (which will be made precise later), we have by the

definition of convex conjugation:

Λ∗
P (l) = sup

θ∈ΘP

(
θ · l− logE[exp(θX)]

)
=− log

(
inf

θ∈ΘP

E[exp(θ(X − l))]

)
. (85)

Let us decompose via:

E[exp(θ(X − l))] =E[exp(θ(X − l));X ≥ l] +E[exp(θ(X − l));X < l]. (86)

For θ < 0, the first term on the right side of (86) can be bounded via:

0≤E[exp(θ(X − l));X ≥ l]≤ exp(|θ(l−L)|) ·E[exp(θ(X −L))], (87)

while the second term can be bounded via:

0≤E[exp(θ(X − l));X < l]≤ exp(|θ(l−L)|) ·P(X < l). (88)

Now for any ϵ > 0, set θ =−1/ϵ and l−L= ϵ, so that exp(|θ(l−L)|) = exp(1) in (87)-(88). Since

X ≥ L with probability one and X always has continuous CDF in a neighborhood of L, by the

bounded convergence theorem, limθ→−∞E[exp(θ(X − L))] = 0. Moreover, liml↓L P(X < l) = 0. So
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the upper bounds in (87)-(88) can be made arbitrarily small by taking (the just defined) ϵ > 0 to

be sufficiently small. Therefore, we have shown that

lim
l↓L

inf
θ∈ΘP

E[exp(θ(X − l))] = 0,

which, by (85), translates into

lim
l↓L

Λ∗
P (l) =∞.

Since

lim
θ→−∞

Λ′
P (θ) =L,

we have

lim
θ→−∞

Λ∗
P (Λ

′
P (θ)) =∞, (89)

which is the equivalent representation for (9).

In the case where there is strictly positive mass on L, note that if we take l > L with l sufficiently

close to L, then the infimum in infθ∈ΘP
E[exp(θ(X − l))] from (85) is achieved with θ < 0. (This is

completely trivial if P(X = L) = P(X < l) for l > L with l sufficiently close to L.) So it suffices to

simply consider θ < 0. Then for l > L with l sufficiently close to L, we have the lower bounds:

inf
θ∈ΘP

E[exp(θ(X − l))]≥ inf
θ<0

E[exp(θ(X − l));X =L]

= inf
θ<0

exp(θ(L− l)) ·P(X =L)

= P(X =L).

Therefore, we have shown that

lim inf
l↓L

inf
θ∈ΘP

E[exp(θ(X − l))]≥ P(X =L),

which, by (85), translates into

limsup
l↓L

Λ∗
P (l)≤− logP(X =L)<∞,

since P(X =L)> 0 by assumption. So although

lim
θ→−∞

Λ′
P (θ) =L,

unlike in the case of continuous distributions, where we ended up with (89), here we have

limsup
θ→−∞

Λ∗
P (Λ

′
P (θ))<∞.

□
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Appendix B: Proofs for Section 3.2

Proof of Proposition 4. Let i be any sub-optimal arm. From the lower bounds in (55) in the

proof of Theorem 1, there exists a> 0 such that for all x∈ [log1+γ(T ), (1− γ)T ] and T sufficiently

large,

T−a ≤ Pνπ(Ni(T )> (1− γ)T )

≤ Pνπ(Ni(T )>x).

Thus,

0≤ Pνπ (|µ̂i(T )−µi|> ϵ |Ni(T )>x)

≤
Pνπ

(
|µ̂i(T )−µi|> ϵ, Ni(T )> log1+γ(T )

)
Pνπ (Ni(T )> (1− γ)T )

≤ T a · 2exp
(
− log1+γ(T ) · (Λ∗

Pµi (µi + ϵ)∧Λ∗
Pµi (µi − ϵ))

)
,

where to obtain the last inequality, we use Cramér’s Theorem (see, for example, Theo-

rem 2.2.3 on page 27 of Dembo and Zeitouni (1998)) to upper bound the numerator. So

Pνπ (|µ̂i(T )−µi|> ϵ |Ni(T )>x)→ 0 uniformly for x∈ [log1+γ(T ), (1−γ)T ] as T →∞, which yields

the desired result. □

Appendix C: Proofs for Section 3.3

Verification of (70) in Proof of Theorem 2. With the natural parameterization of an exponen-

tial family Pθ, θ ∈ΘP , as in (78), with KL divergence as in (79), we have:

d

dθ
D(Pθ ∥Pθ0) =−Λ′′

P (θ)(θ0 − θ).

Denote θ1 := θP (µ1) and θ2 := θP (µ2) (with θP (·) as defined in the parameterization by mean in

(1)), so that θ2 < θ1. Let ϵ > 0 such that θ2 + ϵ < θ1. Then,

d

dθ

D(Pθ ∥Pθ1)

D(Pθ ∥Pθ2+ϵ)
=

Λ′′
P (θ)

D(Pθ ∥Pθ2+ϵ)2

D(Pθ ∥Pθ1)(θ2 + ϵ− θ)−D(Pθ ∥Pθ2+ϵ)(θ1 − θ)︸ ︷︷ ︸
:=ξ(θ)

 .

Note that ξ(θ2+ ϵ) = 0 and ξ′(θ) =D(Pθ ∥Pθ2+ϵ)−D(Pθ ∥Pθ1) for θ < θ2+ ϵ. So ξ′(θ)< 0, and thus

ξ(θ)> 0 for θ < θ2+ ϵ. From this, together with the fact that Λ′′
P (θ)≥ 0 for all θ, we conclude that

θ 7→D(Pθ ∥Pθ1)/D(Pθ ∥Pθ2+ϵ) is monotone increasing for θ < θ2 + ϵ.

Let δ > 0 such that µ2+δ < µ1. Since z 7→ θP (z) is monotone increasing, z 7→ dP (z,µ1)/dP (z,µ2+

δ) must also be monotone increasing for z < µ2 + δ. So for any δ > 0,

inf
z<µ2+δ

dP (z,µ1)

dP (z,µ2 + δ)
= inf

z<µ2

dP (z,µ1)

dP (z,µ2 + δ)
.
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Since for z < µ2, δ 7→ dP (z,µ1)/dP (z,µ2 + δ) is monotone decreasing, it must also be that δ 7→

infz<µ2
dP (z,µ1)/dP (z,µ2 + δ) is monotone decreasing. Therefore,

lim
δ↓0

inf
z<µ2

dP (z,µ1)

dP (z,µ2 + δ)
= sup

δ>0

inf
z<µ2

dP (z,µ1)

dP (z,µ2 + δ)
.

Finally, since both z 7→ dP (z,µ1)/dP (z,µ2 + δ) and δ 7→ dP (z,µ1)/dP (z,µ2 + δ) are monotone, and

thus are both quasi-convex and quasi-concave, Sion’s Minimax Theorem yields:

sup
δ>0

inf
z<µ2

dP (z,µ1)

dP (z,µ2 + δ)
= inf

z<µ2

sup
δ>0

dP (z,µ1)

dP (z,µ2 + δ)
= inf

z<µ2

dP (z,µ1)

dP (z,µ2)
.

□

Appendix D: Proofs for Section 3.4

The proof of Lemma 2 is a simplification of the proof of Proposition 5.

Lemma 2. Under the assumptions of Theorem 3, for any environment ν = (P1, . . . , PK)∈MK and

each sub-optimal arm i, we have Ni(T )→∞ in Pνπ-probability as T →∞.

Proof of Lemma 2. Suppose the conclusion is false for some environment ν̃ = (P̃1, P2, . . . , PK)∈

MK . Without loss of generality, suppose arm 1 is sub-optimal in ν̃ and there exists m> 0, ϵ > 0

and a deterministic sequence of times Tn ↑∞ such that

Pν̃π (N1(Tn)≤m)≥ ϵ. (90)

Denote the event in (90) by A′
n. Consider another environment ν = (P1, P2, . . . , PK) ∈MK where

arm 1 is optimal (with all other arms being the same as in ν̃). Pick L> 0 large enough so that

Pν̃π

(
∀ l= 1, . . . ,m :

1

l

l∑
t=1

log
dP1

dP̃1

(X1(t))≥−D(P̃1 ∥P1)−L

)
≥ 1− ϵ/2. (91)

Define

B′
n =

{
1

N1(Tn)

N1(Tn)∑
t=1

log
dP1

dP̃1

(X1(t))≥−D(P̃1 ∥P1)−L

}
.

Following the same steps from (23)-(25) but with A′
n, B′

n in the place of An, Bn, respectively,

Pνπ(∃ i ̸= 1 :Ni(Tn)>Tn/(2K))≥ Pν̃π(A′
n,B′

n) · exp
(
−
(
D(P̃1 ∥P1)+L

)
m
)
.

From (90) and (91), we have Pν̃π(A′
n,B′

n)≥ ϵ/2 for all n. This violates the M-consistency of π, and

thus (90) cannot be true. □



47

Appendix E: Proofs for Section 4.1

Proof of Proposition 7. The proof of the lower bound part of (31) follows from Theorem 4

(which uses Proposition 8). To establish the upper bound part of (31), we can use the same proof of

Theorem 2; see Section 6.2. Without loss of generality, suppose that µ(Q1)>µ(Q2)> · · ·>µ(QK)

(i.e., r(i) = i for all i∈ [K]). So the only thing that needs to be checked is the analog of (70):

lim
δ↓0

inf
z<µ(Q2)+δ

dQ1
(z,µ(Q1))

dP (z,µ(Q2)+ δ)
= inf

z<µ(Q2)

dQ1
(z,µ(Q1))

dP (z,µ(Q2))
. (92)

(Below, we check (92) for Q1 and Q2. The same arguments apply for the other combinations of Qi,

i≥ 3 and Qj, j ≤ i− 1.) First, there exists a fixed η > 0 (depending on Q1 and Q2) such that for

all δ > 0 sufficiently small, we have both:

inf
z<µ(Q2)

dQ1
(z,µ(Q1))

dP (z,µ(Q2))
= inf

z<µ(Q2)−η

dQ1
(z,µ(Q1))

dP (z,µ(Q2))
, (93)

inf
z<µ(Q2)+δ

dQ1
(z,µ(Q1))

dP (z,µ(Q2)+ δ)
= inf

z<µ(Q2)−η

dQ1
(z,µ(Q1))

dP (z,µ(Q2)+ δ)
. (94)

Note that

z 7→ dP (z,µ(Q2))

dP (z,µ(Q2)+ δ)

is monotone decreasing for z < µ(P2), which we deduce from the verification of (70) in proof of

Theorem 2 in Appendix C. Also, we have:

lim
δ↓0

sup
z<µ(Q2)−η

dP (z,µ(Q2))

dP (z,µ(P2)+ δ)
= sup

δ>0

sup
z<µ(Q2)−η

dP (z,µ(Q2))

dP (z,µ(Q2)+ δ)
= 1,

lim
δ↓0

dP (µ(Q2)− η,µ(Q2))

dP (µ(Q2)− η,µ(Q2)+ δ)
= 1.

Therefore, we have uniform convergence for z < µ(P2)− η:

lim
δ↓0

sup
z<µ(Q2)−η

∣∣∣∣ dP (z,µ(Q2))

dP (z,µ(Q2)+ δ)
− 1

∣∣∣∣= 0. (95)

For any ϵ∈ (0,1), using (95), we have for sufficiently small δ > 0:

(1− ϵ) inf
z<µ(Q2)−η

dQ1
(z,µ(Q1))

dP (z,µ(Q2))
≤ inf

z<µ(Q2)−η

dQ1
(z,µ(Q1))

dP (z,µ(Q2)+ δ)
· dP (z,µ(Q2))

dP (z,µ(Q2))

≤ (1+ ϵ) inf
z<µ(Q2)−η

dQ1
(z,µ(Q1))

dP (z,µ(Q2))
.

Sending δ ↓ 0, followed by ϵ ↓ 0, and then using (93)-(94), we obtain (92). □
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Proof of Corollary 2. Let ν consist of two Gaussian reward distributions with variance σ2
0, and

µ1 and µ2 as the means for arms 1 and 2, respectively. Without loss of generality, suppose that

µ1 >µ2 (i.e., r(i) = i for i= 1,2). The proof of the lower bound part of (31) follows from Theorem

4 (which uses Proposition 8). The upper bound part:

limsup
T→∞

logPνπ(N2(T )> log1+γ(T ))

log(log1+γ(T ))
≤−σ2

σ2
0

, (96)

actually follows from the proof of the upper bound part of Theorem 2. In the Gaussian setting,

the proof is substantially simpler, and so for future reference, we provide it below. The uniformity

over x follows by the monotonicity of x 7→ logPνπ(N2(T )>x)/ log(x) for fixed T and x> 1.

□

Verification of (96) in Proof of Corollary 2. Let xT =
⌊
log1+γ(T )

⌋
with fixed γ ∈ (0,1). Let

∆= µ1 −µ2 > 0. As in the proof of Theorem 2, we have:

Pνπ (N2(T )>xT )

≤ Pνπ

(
∃ t∈ (τ2(xT ), T ] s.t. µ̂1(t− 1)+

√
2σ2 log(t− 1)

N1(t− 1)
≤ µ̂2(t− 1)+

√
2σ2 log(t− 1)

N2(t− 1)

)

≤ Pνπ

∃ t∈ (xT , T ] s.t. µ̂1(t− 1)+

√
2σ2 log(xT )

N1(t− 1)
≤ µ̂2(τ2(xT ))+

√
2σ2 log(T )

xT


≤ Pνπ

(
∃ t∈ (xT , T ] s.t. µ̂1(t− 1)+

√
2σ2 log(xT )

N1(t− 1)
≤ µ2 +

∆

2

)
(97)

+Pνπ

µ̂2(τ2(xT ))+

√
2σ2 log(T )

xT

>µ2 +
∆

2

 . (98)

For the term in (97), we have

(97) = Pνπ

(
∃ t∈ (xT , T ] s.t. µ̂1(t− 1)+

√
2σ2 log(xT )

N1(t− 1)
≤ µ1 −

∆

2

)

≤
∞∑

m=1

Pνπ

(
1

m

m∑
l=1

X1(l)≤ µ1 −
√

2σ2 log(xT )

m
− ∆

2

)
(99)

≤
∞∑

m=1

exp

− m

2σ2
0

(√
2σ2 log(xT )

m
+

∆

2

)2
 (100)

= x
−σ2/σ2

0
T ·

∞∑
m=1

exp

(
−
√
mσ2 log(xT )∆√

2σ2
0

− m∆2

8σ2
0

)

≤ x
−σ2/σ2

0
T ·

∞∑
m=1

exp

(
−
√
mσ∆√
2σ2

0

− m∆2

8σ2
0

)
(for T ≥ 16), (101)
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where to obtain (99), we have used a union bound over all possible values of N1(t), t≥ 1, and to

obtain (100), we have used a large deviations upper bound.

For the term in (98), we have for sufficiently large T ,√
2σ2 log(T )

xT

<
∆

4
.

So for sufficiently large T ,

(98)≤ Pνπ

(
1

xT

xT∑
t=1

X2(t)>µ2 +
∆

4

)

≤ exp

(
−xT · ∆2

32σ2
0

)
, (102)

where to obtain (102), we have used a large deviations upper bound.

Putting together (97), (101) and (98), (102), we have established the desired result:

limsup
T→∞

logPνπ (N2(T )>xT )

log(xT )
≤−σ2

σ2
0

.

□

Appendix F: Proofs for Section 4.2

Proof of Proposition 8. This proof is an extension and simplification of Propositions 7-8 of

Cowan and Katehakis (2019).

We restrict our attention to sample paths ω belonging to{
ω : lim

n→∞

1

n

n∑
t=1

Xi(t) = µi, i∈ [K]

}
. (103)

Without loss of generality, suppose that arm 1 is the unique optimal arm, i.e., µ1 > maxi≥2 µi.

Here, we define the KL-UCB index for arm i at time t+1 via:

Ui(t) = sup

{
z ∈ IP : dP (µ̂i(t), z)≤

log(t)

Ni(t)

}
, (104)

where, as defined previously, µ̂i(t) =
1

Ni(t)

∑Ni(t)

s=1 Xi(s).

We begin with the upper bound part of the proof. Consider sub-optimal arm i ≥ 2, and let

δ ∈ (0, (µ1 −µi)/2). We have

Ni(T ) = 1+
T−1∑
t=K

I (A(t+1)= i, Ui(t)≥ µ1 − δ, µ̂i(t)≤ µi + δ) (105)

+
T−1∑
t=K

I (A(t+1)= i, Ui(t)≥ µ1 − δ, µ̂i(t)>µi + δ) (106)

+
T−1∑
t=K

I (A(t+1)= i, Ui(t)<µ1 − δ) , (107)
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where A(t) is the arm sampled by the algorithm at time t.

The first sum is upper bounded via:

(105)≤
T−1∑
t=K

I
(
A(t+1)= i, dP (µi + δ,µ1 − δ)≤ log(t)

Ni(t)

)
(108)

≤
T−1∑
t=K

I
(
A(t+1)= i, Ni(t)≤

log(T )

dP (µi + δ,µ1 − δ)

)
≤ log(T )

dP (µi + δ,µ1 − δ)
+ 1. (109)

The bound in (108) holds due to the events Ui(t)≥ µ1 − δ and µ̂i(t)≤ µi + δ and the definition of

the index in (104).

The second sum is upper bounded via:

(106)≤
∞∑

t=K

I (A(t+1)= i, µ̂i(t)>µi + δ) . (110)

On sample paths in (103), the indicators on the right side of (110) can equal 1 for at most finitely

many t. (For each 1 in the sum, arm i is played an additional time and an additional sample

incorporated into µ̂i(t).)

The third sum is upper bounded via:

(107)≤
∞∑

t=K

I (A(t+1)= i, U1(t)≤Ui(t)<µ1 − δ)

≤
∞∑

t=K

I (U1(t)<µ1 − δ) . (111)

On sample paths in (103), the indicators on the right side of (111) can equal 1 for at most finitely

many t. (As t→∞, either N1(t) increases to infinity or remains finite. In the first case, µ̂1(t)→ µ1,

and so for t sufficiently large, U1(t)≥ µ̂1(t)>µ1− δ/2. In the second case, log(t) in (104) increases

without bound, and so U1(t) also increases without bound, with U1(t) > µ1 for all t sufficiently

large.)

Putting together (109)-(111), and sending T →∞ followed by δ ↓ 0, we have for each sub-optimal

arm i≥ 2,

limsup
T→∞

Ni(T )

log(T )
≤ 1

dP (µi, µ1)
. (112)

Therefore, for the optimal arm 1,

lim
T→∞

N1(T )

T
= 1, (113)
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which, by the form of the index in (104), then implies:

lim
t→∞

U1(t) = µ1. (114)

Then, (113) and (114) imply that for each sub-optimal arm i≥ 2,

lim
T→∞

Ni(T ) =∞. (115)

(If (115) is not true for some sub-optimal arm j, then since the term log(t) grows without bound in

the index (104), we would eventually have Uj(t)>µ1+ ϵ > U1(t) for some ϵ > 0 and all t sufficiently

large, thereby contradicting (113).)

We now develop the lower bound parts of the proof. As defined previously, for any positive

integer m, we use τ1(m) to denote the time of the m-th play of arm 1. So for each sub-optimal arm

i≥ 2,

U1(τ1(m)− 1)>Ui(τ1(m)− 1). (116)

Let δ > 0. We have for m sufficiently large,

max
t∈[τ1(m),τ1(m+1)]

log(t)

Ni(t)
≤ log(τ1(m+1))

Ni(τ1(m)− 1)

=
log(τ1(m+1))

log(τ1(m)− 1)

log(τ1(m)− 1)

Ni(τ1(m)− 1)

≤ (1+ δ)
log(τ1(m)− 1)

Ni(τ1(m)− 1)
(117)

≤ (1+ δ)dP (µi − δ,Ui(τ1(m)− 1)) (118)

≤ (1+ δ)dP (µi − δ,U1(τ1(m)− 1)) (119)

≤ (1+ δ)dP (µi − δ,µ1 + δ). (120)

Note that (117) is due to (113), (118) is due to limt→∞ µ̂i(t) = µi for each sub-optimal arm i≥ 2

and the form of the index in (104), (119) is due to (116), and (120) is due to (114). From (120),

we see that

lim inf
T→∞

Ni(T )

log(T )
≥ 1

dP (µi, µ1)
,

which together with (112), completes the proof. □

Proof of Theorem 4. Without loss of generality, suppose that the long-run average rewards (in

the sense of (33)) for arms 1,2, . . . ,K within the environment ν satisfy Λ′
1(0) > Λ′

2(0) > · · · >

Λ′
K(0) (i.e., r(i) = i for all i ∈ [K]). Consider any sub-optimal arm i≥ 2. Let ν̃ be an alternative

environment where the reward distribution structure remains the same for arms i, i + 1, . . . ,K.
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However, for arm j ≤ i− 1 in the environment ν̃, let the distribution of
∑n

t=1Xj(t) for each n≥ 1

be

Qn
j (dx;θj) = exp

(
θj ·x−nΛn

j (θj)
)
Qn

j (dx),

where Qn
j (dx) is the original distribution for

∑n

t=1Xj(t) in the environment ν. Moreover, let θj ∈Θj

such that Λ′
j(θj)<Λ′

i(0) (note that θj < 0). (If this is not possible, then the infimum on the right

side of (35) is empty, and the lower bound is −∞.) So in the environment ν̃, arm i yields the

highest long-run average rewards compared to all other arms.

Let δ > 0, and define the events:

AT =

{∣∣∣∣∣Nj(T )

log(T )
− 1

dP (Λ′
j(θj),Λ

′
i(0))

∣∣∣∣∣≤ δ, ∀ j ≤ i− 1

}

∩

{∣∣∣∣∣Nj(T )

log(T )
− 1

dP (Λ′
j(0),Λ

′
i(0))

∣∣∣∣∣≤ δ, ∀ j ≥ i+1

}
BT =

{∣∣µ̂j(T )−Λ′
j(θj))

∣∣≤ δ, ∀ j ≤ i− 1
}
.

Following steps analogous to (51)-(53) in the proof of Theorem 1,

Pνπ(Ni(T )> (1− γ)T )

=Eν̃π

I (Ni(T )> (1− γ)T ) exp

 i−1∑
j=1

−θj ·
Nj(T )∑
t=1

Xj(t)+Nj(T ) ·Λ
Nj(T )

j (θj)

 (121)

≥Eν̃π

[
I (AT ,BT ) exp

(
i−1∑
j=1

(
−θj · µ̂j(T )+Λ

Nj(T )

j (θj)
)
Nj(T )

)]
(122)

≥Eν̃π

[
I (AT ,BT ) exp

(
i−1∑
j=1

(
−θj ·

(
Λ′

j(θj)− δ
)
+Λj(θj)− δ

)
Nj(T )

)]
(123)

=Eν̃π

[
I (AT ,BT ) exp

(
−

i−1∑
j=1

(
Λ∗

j (Λ
′
j(θj))+ δ(1− θj)

)
Nj(T )

)]
(124)

≥ Pν̃π(AT ,BT ) · exp

(
−

i−1∑
j=1

(
Λ∗

j (Λ
′
j(θj))+ δ(1− θj)

)( 1

dP (Λ′
j(θj),Λ

′
i(0))

+ δ

)
log(T )

)
. (125)

In (121), we have performed a change-of-measure from environment ν to ν̃. In (122), we use the

fact that {Ni(T )> (1−γ)T} ⊃AT for sufficiently large T . We have used the event BT in (123), and

the relevant identity for the convex conjugates Λ∗
j in (124). We have used the event AT in (125).

We also note that limT→∞ Pν̃π(AT ,BT ) = 1. In environment ν̃, limT→∞ Pν̃π(AT ) = 1 is due to the

MP -pathwise convergence property of the algorithm π, as in (34). And limT→∞ Pν̃π(BT ) = 1 is due

to the same result for AT , together with the sample mean WLLN that comes from Assumptions

1-2 (using the upper bound part of the Gärtner-Ellis Theorem; for details, see Lemma 3.2.5 of
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Bucklew (2004)). From (125), taking logs and dividing by log(T ), and sending T →∞ followed by

δ ↓ 0, we obtain:

lim inf
T→∞

logPνπ(Ni(T )> (1− γ)T )

log(T )
≥−

i−1∑
j=1

Λ∗
j (Λ

′
j(θj))

dP (Λ′
j(θj),Λ

′
i(0))

.

This holds for any θj ∈Θj, j ≤ i− 1 such that Λ′
j(θj)<Λ′

i(0). Under Assumptions 1-2, each Λ′
j is

an invertible mapping between Θj and Ij (see Theorem 26.5 of Rockafellar (1970)). Thus,

lim inf
T→∞

logPνπ(Ni(T )> (1− γ)T )

log(T )
≥−

i−1∑
j=1

inf
z∈Ij :z<Λ′

i(0)

Λ∗
j (z)

dP (z,Λ′
i(0))

.

The conclusion (35) holds with the infimum over Bγ(T ) = [log1+γ(T ), (1 − γ)T ] due to x 7→

logPνπ(Ni(T )>x)/ log(x) being monotone decreasing for x∈Bγ(T ), with T fixed. □
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