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We study the behavior of Thompson sampling from the perspective of weak convergence. In the regime

where the gaps between arm means scale as 1/
√
n with the time horizon n, we show that the dynamics

of Thompson sampling evolve according to discrete versions of SDEs and stochastic ODEs. As n→∞, we

show that the dynamics converge weakly to solutions of the corresponding SDEs and stochastic ODEs. Our

weak convergence theory, which covers both multi-armed and linear bandit settings, is developed from first

principles using the Continuous Mapping Theorem and can be directly adapted to analyze other sampling-

based bandit algorithms, for example, algorithms using the bootstrap for exploration. We also establish an

invariance principle for multi-armed bandits with gaps scaling as 1/
√
n—for Thompson sampling and related

algorithms involving posterior approximation or the bootstrap, the weak diffusion limit is in general the

same regardless of the specifics of the reward distributions or the choice of prior. In particular, as suggested

by the classical Bernstein-von Mises normal approximation for posterior distributions, the weak diffusion

limits generally coincide with the limit for normally-distributed rewards and priors.

Key words : Multi-armed Bandits, Regret Distribution, Limit Theorems, Mis-specification

History : Manuscript version – August 31, 2023

Contents

1 Introduction 2

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Diffusion Approximations for Multi-armed Bandits 6

2.1 Derivation of the SDE Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Derivation of the Stochastic ODE Approximation . . . . . . . . . . . . . . . . . . . . 9

2.3 Extension to K > 2 Arms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Characterization via Stochastic Differential Equations 11

4 Characterization via Stochastic Ordinary Differential Equations 17

5 Diffusion Approximations for Linear Bandits 21

5.1 Finitely Many Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1



2

5.2 Infinitely Many Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Applications of Diffusion Approximations 27

6.1 General Reward Distributions and Posterior Approximations . . . . . . . . . . . . . 27

6.2 Model Mis-specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.3 Bootstrap-based Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.4 Estimated Variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.5 Batched Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A Normal Approximations for Posteriors and the Bootstrap 37

B Weak Convergence Technical Lemmas 44

1. Introduction

The multi-armed bandit (MAB) problem has developed into an extremely fruitful area of both

research and practice in the past two decades. Modern applications are now numerous and span

diverse areas ranging from personalized online advertising and news article recommendation (Li

et al. 2010, Chapelle and Li 2011), to dynamic pricing and portfolio management (Shen et al.

2015, Ferreira et al. 2018, Misra et al. 2019), to mobile health and personalized medicine (Tewari

and Murphy 2017, Bastani and Bayati 2020), and the list is constantly growing. Along with the

widespread deployment of bandit algorithms, there has recently been a dramatic increase in the-

oretical bandit research, which has almost exclusively focused on optimizing finite-horizon regret

bounds, either in expectation or with high probability. While such regret bounds, especially ones

in expectation, are accompanied by strong (asymptotic) optimality guarantees (Lai and Robbins

1985, Burnetas and Katehakis 1996), it is well known that practical performance often deviates

from what is suggested by the regret bounds. For instance, although regret bounds for Thomp-

son sampling (originally due to Thompson (1933), popularized by Chapelle and Li (2011), and

then analyzed by Agrawal and Goyal (2012) and Kaufmann et al. (2012)) are generally somewhat

worse compared to those for upper-confidence bound (UCB) algorithms (originally due to Lai and

Robbins (1985) and Agrawal (1995), and then further developed and popularized by Auer et al.

(2002)), it has been empirically observed that Thompson sampling often significantly outperforms

UCB algorithms on many adaptive decision-making tasks (Chapelle and Li 2011, Scott 2010); see

also Russo et al. (2019) for a recent overview of Thompson sampling.

Moreover, regret bounds collapse all of the information in the regret distribution into a single

performance measure, thus offering a reduced view of performance. In settings where bandit algo-

rithms are deployed with only a limited number of independent runs (so that the law of large
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numbers does not “kick in”), the expected regret may not be the best performance measure to

optimize for. One may instead be interested in controlling some other attribute of the regret distri-

bution such as a measure of overall spread or tail decay. However, even for the most fundamental

models such as stochastic MABs, it is difficult to accurately characterize such attributes of the

regret distribution. Indeed, work in such directions has been very sparse in the literature, being

essentially limited to that of Audibert et al. (2009) and Salomon and Audibert (2011).

As a first step towards providing distributional characterizations of the regret of bandit algo-

rithms, we study the weak convergence (i.e., convergence in distribution) of the dynamics of

Thompson sampling to diffusion processes, specifically, to solutions of stochastic differential equa-

tions (SDEs) and stochastic ordinary differential equations (ODEs). As detailed in our derivations,

for a time horizon of n, when the gap between the arm means scales as ∆/
√
n for some fixed ∆,

the dynamics of Thompson sampling are governed by equations that are discrete versions of SDEs

and stochastic ODEs, which converge weakly to their continuous versions as n→∞. (Recently,

Kuang and Wager (Kuang and Wager 2021) independently proposed this diffusion scaling regime

and developed similar weak convergence results for MABs via a different proof approach. See the

detailed discussion in Section 1.2 below.) This 1/
√
n scaling is fundamental in the theory of statis-

tical efficiency (see van der Vaart (1998) chapters 6-9 and 25, Le Cam and Yang (2000) or Bickel

et al. (1998)). Indeed, the intuition is that given enough data, any (fixed) model parameter can be

learned with unlimited precision, so a better way of measuring the performance of an algorithm is

to make the learning task more challenging simultaneously as the time horizon increases. Directly

related to all of this is the minimax (also called problem-independent or worst-case) bandit set-

ting. In such settings, no gap assumptions are made, but information-theoretic lower bounds on

expected regret generally involve the construction of alternative bandit environments with 1/
√
n-

scale gaps (see, for instance, chapters 15 and 24 of (Lattimore and Szepesvári 2020)). Thus, our

weak convergence theory allows for the characterization of the regret distribution under minimax

gap regimes.

1.1. Contributions

One of our main contributions is the development of weak convergence theory to approximate

the dynamics, and in particular the regret, of Thompson sampling by the solutions of SDEs and

stochastic ODEs (see Section 2 and Theorems 1, 2 and 3), which (along with the work of Kuang

and Wager (Kuang and Wager 2021)) is new to the literature. We also extend the weak convergence

theory to linear bandits with both finite and infinite action sets, where the action sets are allowed

to be stochastic/time-varying (see Section 5 and Theorems 4 and 5). On the technical side, we

provide a transparent theory that clarifies from first principles using the Continuous Mapping
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Theorem exactly why SDE and stochastic ODE weak limits should be obtained, and the ideas

and tools that we discuss are also potentially of interest for analyzing other stochastic systems.

Although our theory focuses on Thompson sampling, it can be readily adapted to yield diffusion

approximations for other bandit algorithms.

One of our particularly striking results is an invariance principle for Thompson sampling in the

diffusion regime (see Section 6.1 and Theorem 6). We show that for MABs, the weak diffusion

limits for Thompson sampling with general reward distributions are all the same, and moreover

the choice of prior does not matter as long as it allocates positive density to neighborhoods of the

actual arm means. This result is intuitive in light of the classical Bernstein-von Mises Theorem,

which establishes the asymptotic normality of posterior distributions in great generality, along

with the fact that (reasonably specified) priors are eventually overwhelmed by data. We develop

a slightly stronger locally-uniform almost sure version of the Bernstein-von Mises Theorem (see

Proposition 2), which allows us to conclude that the weak diffusion limits for Thompson sampling

with general reward distributions and priors coincide with the limit for Thompson sampling with

normally-distributed rewards and priors. This result also indicates that in this 1/
√
n-scale gap

regime, sampling from a Laplace approximation of a posterior results in the same Thompson

sampling behavior as sampling from an exact posterior. Furthermore, we develop weak diffusion

limits for algorithms that use bootstrap samples for exploration (see Section 6.3 and Theorem 8),

which are valid for general reward distributions (without the possibility of mis-specification) and

also coincide with the limit for Thompson sampling with normally-distributed rewards and priors

(due to the general asymptotic normality associated with bootstrapping the mean of a distribution).

Altogether, these results highlight the central role that normality plays in determining the behavior

of sampling-based bandit algorithms in minimax gap regimes.

1.2. Related Work

In the process of completing our paper, we became aware of the independent work of Kuang

and Wager (WX) Kuang and Wager (2021), which was posted on arXiv prior to our manuscript.

Here we discuss in detail the similarities and differences between their work and ours. The focus

of WX is very broad—they provide a general framework within which the dynamics of bandit

algorithms can be studied under diffusion scaling. Central to their framework is the concept of

a sampling function, which encodes the specific characteristics of an algorithm, and at any time

specifies the probabilities of playing different arms. WX show that the dynamics of any algorithm

within their framework converge weakly to solutions of SDEs and stochastic ODEs involving the

corresponding sampling function, with Thompson sampling being a case of special interest. On the

other hand, our focus is on Thompson sampling and related algorithms. The main overlap between



5

their work and ours is that both obtain similar SDE and stochastic ODE approximations for the

dynamics of Thompson sampling in the MAB setting assuming 1/
√
n-scale gaps and normally-

distributed rewards (cf. Theorems 1 and 2; Theorems 7-10 in Kuang and Wager (2021)). However,

our approach to developing the weak convergence theory is different from theirs. Furthermore, we

consider extensions that are unrelated to theirs. The differences can be summarized as follows.

1) WX represent sequential algorithms as Markov chains, and use the martingale framework

of Stroock and Varadhan (Stroock and Varadhan 1979) to show weak convergence of the Markov

chains to diffusion processes by establishing the corresponding convergence of infinitesimal genera-

tors. On the other hand, we use representations in terms of discrete versions of SDEs and stochastic

ODEs, and we argue directly via the Continuous Mapping Theorem that the discrete systems

converge weakly to their continuous counterparts.

2) WX go beyond the general weak convergence theory by analyzing the behavior of one-armed

and two-armed Thompson sampling in more depth, for instance, by examining the effect of different

prior variance scalings, the effect of increasing the diffusion-scale gap between the mean of the

known and unknown arm, as well as the evolution of sampling probabilities over time. On the other

hand, our extensions focus on different directions, such as the generalization from MABs to linear

bandits, as well as the development of a general invariance principle for Thompson sampling and

related algorithms, for instance, involving posterior approximation or bootstrap-based exploration.

We also study the effects of model mis-specification, variance estimation and batched updates on

algorithm behavior.

Recently, Kalvit and Zeevi (2021) has also studied the behavior of the well-known UCB1 algo-

rithm (from Auer et al. (2002)) in worst-case gap regimes. When the gaps between arm means

scale as
√
log(n)/n, they obtain weak diffusion limits for UCB1. Additionally, they provide sharp

distinctions between the behavior of Thompson sampling and UCB algorithms when the gap sizes

are zero or near zero.

Also related to our work, Araman and Caldentey (2022) consider a sequential binary testing

environment with experiments that arrive according to an exogenous Poisson process. They obtain a

diffusion limit as the intensity of arrivals increases and the informativeness of experiments decreases.

They then obtain a closed-form solution for optimal experimentation and stopping for the diffusion

limit, which provides nice insights and heuristics for the pre-limit problem.

1.3. Notation

For functions F : Rd → Rd and G : R → Rd, with component functions F = (F1, . . . ,Fd)

and G = (G1, . . . ,Gd), we denote their component-wise function composition by F ◦ G(x) =
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(F1(G1(x)), . . . ,Fd(Gd(x))), and G(x) = (G1(x), . . . ,Gd(x)), for x ∈ R. We use Dd[0,1] to denote

Rd-valued Skorohod space, the space of functions mapping [0,1]→ Rd, that are continuous from

the right and have limits from the left. For a function f with domain in R, we write f(x−) to

denote the limit from the left at x.

2. Diffusion Approximations for Multi-armed Bandits

We sketch the development of diffusion approximations for MABs, eventually arriving at SDE

and stochastic ODE approximations to the discrete system evolving according to the Thompson

sampling algorithm. For concreteness and simplicity, we focus here on the two-armed setting with

normal arm rewards, but our approach can be directly generalized to accommodate more than two

arms, which we carry out in Sections 3 and 4. Our results can also be easily generalized to other

reward distributions.

For a time horizon n, we consider an MAB model, where at time i = 1, . . . , n, the reward for

playing arm k, k= 1,2, is:

Xk(i)
iid∼N(µn

k , σ
2
k). (1)

To obtain a diffusion approximation, without loss of generality, we assume for arm k that µn
k =

µk√
n

for some fixed µk, and that µ1 >µ2. We assume that the variances σ2
k > 0 are known. (We can also

allow the variance of each arm k to change in the asymptotics as n→∞, for example: (σn
k )

2 → σ2
k

for some σ2
k > 0.)

For the Thompson sampling algorithm, we choose some b2 > 0 and put an independent

N(0, (b2n)−1) prior on each µn
k . As we will see, the n−1 scaling of the prior variance is convenient

for developing diffusion approximations, as the resulting SDEs will have unique solutions due to

the drift and dispersion functions possessing Lipschitz-continuity. But this is by no means the only

possible choice of scaling for the prior variance. Through a more careful treatment of the initial

phase of the system evolution, it should be interesting to study other choices of scaling for the prior

variance that lead to analytically tractable diffusions, and see the effect of the choice on system

behavior.

Remark 1. We caution that using such (b2n)−1 scaling of the prior variance can result in catas-

trophically poor performance if the prior means are set inappropriately. For instance, suppose that

the prior for µn
k , k= 1,2, is N(µ′

k, (b
2n)−1). With Xk(1), . . . ,Xk(mk) sampled according to (1), the

posterior means have the form:

1

1+ b2σ2
k

(
b2σ2

kµ
′
k +

1

n

mk∑
i=1

Xk(i)

)
,
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which suggests that if we set µ′
2−µ′

1 > 0 to be large enough, then (incorrectly) the posterior mean

estimate for µn
2 will, with high probability, always be greater than that of µn

1 when mk ≤ n. We will

always set the prior means to be zero, thus avoiding this issue. However, Kuang and Wager (2021)

show that for one-armed Thompson sampling, even with a prior mean of zero, using a n−1 scaling

of the prior variance can result in similarly undesirable performance as µ1−µ2 becomes large (see

their Theorem 9).

2.1. Derivation of the SDE Approximation

We first derive the discrete approximations for the SDE. For a time horizon n, consider the setup

where for each arm k= 1,2 and at each time i= 1, . . . , n, there is a reward Xk(i)
iid∼N(µn

k , σ
2
k) that

is exogenously generated. The algorithm decides which arm to play, which is reflected by the status

of the indicator variables Ik(i), equal to either 0 or 1, reflecting the decision to not play or play,

respectively. The algorithm then receives as feedback the possibly censored rewards Ik(i)Xk(i). For

a time horizon n, we use the filtration

Gn
j = σ (Ik(i), Ik(i)Xk(i) : k= 1,2, 1≤ i≤ j) (2)

to capture the history of arm plays and rewards accumulated up to and including time j. Denote tj =

j/n, 0≤ j ≤ n. After rescaling (in accordance with typical scalings for diffusion approximations),

the dynamics of Thompson sampling are completely captured by the evolution of two processes:

Rn = (Rn
1 ,R

n
2 ) and Y n = (Y n

1 , Y n
2 ), defined via

Rn
k(tj) =

1

n

j∑
i=1

Ik(i) (3)

Y n
k (tj) =

1√
n

j∑
i=1

Ik(i)
Xk(i)−µn

k

σk

. (4)

To see this, note that, at time j+1, having collected history Gn
j , Thompson sampling draws from

the posterior distributions:

µ̃n
k(j+1)∼N

(∑j

i=1 Ik(i)Xk(i)

(Rn
k(tj)+ b2σ2

k)n
,

σ2
k

(Rn
k(tj)+ b2σ2

k)n

)
. (5)

So the probability of playing arm 1 can be expressed as:

P
(
µ̃n
1 (j+1)> µ̃n

2 (j+1)
∣∣ Gn

j

)
(6)

= P
(
N1

(
Y n
1 (tj)σ1 +Rn

1 (tj)µ1

Rn
1 (tj)+ b2σ2

1

,
σ2
1

Rn
1 (tj)+ b2σ2

1

)
>

N2

(
Y n
2 (tj)σ2 +Rn

2 (tj)µ2

Rn
2 (tj)+ b2σ2

2

,
σ2
2

Rn
2 (tj)+ b2σ2

2

) ∣∣∣∣∣ Gn
j

)
(7)

= p1(R
n(tj), Y

n(tj)), (8)
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where the Nk are independent normal random variables with their specified means and variances,

and we define

p1(u, v) =Φ

 v1σ1+u1µ1

u1+b2σ2
1

− v2σ2+u2µ2

u2+b2σ2
2√

σ2
1

u1+b2σ2
1
+

σ2
2

u2+b2σ2
2

 (9)

p2(u, v) = 1− p1(u, v), (10)

for any u= (u1, u2) ∈ [0,1]2 and v = (v1, v2) ∈ R2, with Φ denoting the standard normal CDF. So

at time j+1, the probability of playing arm k, k= 1,2, is pk(R
n(tj), Y

n(tj)). Thus, it is sufficient

to keep track of Rn and Y n.

We can now re-express (3)-(4) as

Rn
k(tj) =

1

n

j∑
i=1

pk(R
n(ti−1), Y

n(ti−1))+Mn
k (tj) (11)

Y n
k (tj) =

j∑
i=1

√
pk(Rn(ti−1), Y n(ti−1)) (B

n
k (ti)−Bn

k (ti−1)) (12)

Rn
k(0) = Y n

k (0) = 0, k= 1,2, (13)

where Mn = (Mn
1 ,M

n
2 ) and Bn = (Bn

1 ,B
n
2 ) are defined via

Mn
k (tj) =

1

n

j∑
i=1

(Ik(i)− pk(R
n(ti−1), Y

n(ti−1))) (14)

Bn
k (tj) =

1√
n

j∑
i=1

Ik(i)(Xk(i)−µn
k)√

pk(Rn(ti−1), Y n(ti−1)) ·σk

, (15)

and (Ik(i) : 1≤ k≤ 2) is a multinomial random variable with a single trial and success probabilities

pk(R
n(ti−1), Y

n(ti−1)). We continuously interpolate the joint processes (Rn, Y n,Bn,Mn) defined in

(11)-(15) to be piecewise constant.

As n→∞, we show that Mn and Bn converge weakly to the D2[0,1] zero process and standard

Brownian motion on R2, respectively. Thus, we expect (11)-(13) to be a discrete approximation to

the SDE:

Rk(t) =

∫ t

0

pk(R(s), Y (s))ds (16)

Yk(t) =

∫ t

0

√
pk(R(s), Y (s))dBk(s) (17)

Rk(0) = Yk(0) = 0, k= 1,2, (18)

where B = (B1,B2) is a standard Brownian motion on R2. See Theorem 1 in Section 3 for a rigorous

version of the above derivation for K ≥ 2 arms.
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2.2. Derivation of the Stochastic ODE Approximation

To obtain a stochastic ODE characterization, we work with a reward generation process that is

equivalent in distribution to the one considered in the derivation of the SDE approximation above.

Instead of considering an exogenously generated reward for each arm in each time period, here

we consider the setup where an exogenous reward for an arm is generated only when that arm is

played. So for arm k, at time j, if Ik(j) = 1 (the algorithm decides to play arm k), then having

collected mk(j − 1) =
∑j−1

i=1 Ik(i) previous rewards for arm k, the algorithm receives as feedback

the reward Xk(mk(j− 1)+1)
iid∼N(µn

k , σ
2
k). For a time horizon n, we use the filtration

Hn
j = σ (Ik(i),Xk(l) : k= 1,2, 1≤ i≤ j, 1≤ l≤mk(j)) (19)

to capture the history of arm plays and rewards accumulated up to and including time j. Again,

denote tj = j/n, 0 ≤ j ≤ n. And after rescaling (in accordance with typical scalings for diffusion

approximations), the dynamics of Thompson sampling are completely captured by the evolution

of two processes: Rn = (Rn
1 ,R

n
2 ) and Zn ◦Rn = (Zn

1 (R
n
1 ),Z

n
2 (R

n
2 )), defined via

Rn
k(tj) =

1

n

j∑
i=1

Ik(i) (20)

Zn
k (R

n
k(tj)) =

1√
n

n·Rn
k (tj)∑

i=1

Xk(i)−µn
k

σk

, (21)

where Zn = (Zn
1 ,Z

n
2 ) is defined via

Zn
k (tj) =

1√
n

j∑
i=1

Xk(i)−µn
k

σk

. (22)

To see this, note that the distributions of Zn
k (R

n
k(tj)) and Y n

k (tj) (as defined in (4)) are the same,

since the rewards Xk(i) are iid and exogenous in both versions of the reward generation process.

Then at time j + 1, having collected history Hn
j , Thompson sampling draws from the posterior

distributions:

µ̃n
k(j+1)∼N

( ∑n·Rn
k (tj)

i=1 Xk(i)

(Rn
k(tj)+ b2σ2

k)n
,

σ2
k

(Rn
k(tj)+ b2σ2

k)n

)
. (23)

So the probability of playing arm 1 can be expressed as:

P
(
µ̃n
1 (j+1)> µ̃n

2 (j+1)
∣∣Hn

j

)
(24)

= P
(
N1

(
Zn

1 (R
n
1 (tj))σ1 +Rn

1 (tj)µ1

Rn
1 (tj)+ b2σ2

1

,
σ2
1

Rn
1 (tj)+ b2σ2

1

)
>

N2

(
Zn

2 (R
n
2 (tj))σ2 +Rn

2 (tj)µ2

Rn
2 (tj)+ b2σ2

2

,
σ2
2

Rn
2 (tj)+ b2σ2

2

) ∣∣∣∣∣Hn
j

)
(25)

= p1(R
n(tj),Z

n ◦Rn(tj)), (26)
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where the Nk are independent normal random variables with their specified means and variances,

and the pk probabilities are as defined in (9)-(10). So at time j+1, the probability of playing arm

k, k= 1,2, is pk(R
n(tj),Z

n ◦Rn(tj)). Thus, it is sufficient to keep track of Rn and Zn ◦Rn.

We can now re-express (20) as

Rn
k(tj) =

1

n

j∑
i=1

pk(R
n(ti−1),Z

n ◦Rn(ti−1))+Mn
k (tj) (27)

Rn
k(0) = 0, k= 1,2, (28)

where Mn = (Mn
1 ,M

n
2 ) is defined via

Mn
k (tj) =

1

n

j∑
i=1

(Ik(i)− pk(R
n(ti−1),Z

n ◦Rn(ti−1))) , (29)

and (Ik(i) : 1≤ k≤ 2) is a multinomial random variable with a single trial and success probabilities

pk(R
n(ti−1),Z

n ◦Rn(ti−1)). We continuously interpolate the joint processes (Rn,Zn ◦Rn,Zn,Mn)

defined in (27)-(29) and (21)-(22) to be piecewise constant. (In this stochastic ODE derivation,

Rn and Mn are the same as in the corresponding definitions in (3), (11) and (14) in the SDE

derivation of Section 2.1, except we are working with a different but distributionally-equivalent

reward generation process.)

As n→∞, we show that Mn and Zn converge weakly to the D2[0,1] zero process and standard

Brownian motion on R2, respectively. Thus, we expect (27)-(28) to be a discrete approximation to

the stochastic ODE:

Rk(t) =

∫ t

0

pk(R(s),B ◦R(s))ds (30)

Rk(0) = 0, k= 1,2, (31)

where B = (B1,B2) is a standard Brownian motion on R2. See Theorems 2 and 3 in Section 4 for

a rigorous version of the above derivation for K ≥ 2 arms.

2.3. Extension to K > 2 Arms

We conclude this section by mentioning that the above theory can be directly generalized to K > 2

arms. For a time horizon n, at time j +1, conditional on the information Gn
j collected up to and

including time j, let µ̃n
k(j + 1) denote the sample from the posterior distribution for arm k =

1, . . . ,K. By straightforward derivations, it can be shown that we can define Lipschitz-continuous

functions pk, k = 1, . . . ,K (analogous to the two-armed case in (9)-(10)) such that for the SDE

characterization, we have

pk(R
n(tj), Y

n(tj)) = P
(
µ̃n
k(j+1)>max

k′ ̸=k
µ̃n
k′(j+1) | Gn

j

)
, (32)
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which is the probability of playing arm k at time j+1. (Of course, Rn and Y n are now RK-valued.)

And similarly, for the stochastic ODE characterization, we have the same pk functions, and the

same probability is expressed as

pk(R
n(tj),Z

n ◦Rn(tj)). (33)

3. Characterization via Stochastic Differential Equations

We first discuss a (random) mapping due to Kurtz and Protter (1991), which allows any function

in D[0,1] to be approximated by a (random) step function with arbitrarily good accuracy. This

mapping idea makes it simple to transition from discrete versions of Itô integrals to the Itô inte-

grals themselves in the continuous weak limit. The mapping is defined in Definition 1, some basic

properties of it are given in Remark 2, and its key properties and relevance to Itô integrals are

given in Lemmas 1-2. The main results of this section are Theorems 1, 4 and 5, which establish

that the dynamics of Thompson sampling in both the MAB and linear bandit settings (as derived

in Sections 2.1, 2.3, 5.1 and 5.2) converge weakly to solutions of SDEs.

Definition 1. For Lemmas 1-2 below, for any ϵ > 0, we define a random mapping χϵ :D[0,1]→
D[0,1] as follows. For any z ∈D[0,1], define inductively the random times τj, starting with τ0 = 0:

τj+1 = inf{t > τj : max(|z(t)− z(τj)| , |z(t−)− z(τj)|)≥ ϵUj+1}, (D1)

where Uj
iid∼Unif[ 1

2
,1]. Then let

χϵ(z)(t) = z(τj), τj ≤ t < τj+1, (D2)

and note that χϵ(z) is a step function (piecewise constant).

Remark 2. We mention here a few properties of the random mapping χϵ. For justification, see

the discussion preceding Lemma 6.1 of Kurtz and Protter (1991). First of all, for any z ∈D[0,1],

with χϵ as defined in (D1)-(D2), we have sup0≤t≤1 |z(t)−χϵ(z)(t)| ≤ ϵ, so χϵ yields an ϵ-uniform

approximation. Note that the purpose of the uniform random variables Uj in defining the random

times τj is to avoid pathological issues concerning, for instance, the locations of jump discontinuities

of the functions zn, z ∈D[0,1]. (In the settings that we consider, it is not absolutely crucial that

we use such randomization to avoid pathological issues. We can define deterministic step function

approximations by considering sequences of partition refinements. However, this randomization

idea introduced in Kurtz and Protter (1991) is both simple and adaptable to other settings, so we

adopt it here.) In particular, since each Uj avoids any (fixed) countable set with probability one,

for each τj, either z will be continuous at τj or we will have

|z(τj−)− z(τj−1)|< ϵUj < |z(τj)− z(τj−1)| .
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This ensures that if zn → z with respect to the Skorohod metric, then τn
j

a.s.→ τj and zn(τn
j )

a.s.→ z(τj)

for each j, where τn
j is defined for zn via (D1). These properties give rise to additional helpful

properties in Lemma 1 below.

Lemma 1 (Continuity of ϵ-Uniform Approximation). Let ϵ > 0 and χϵ be the random map-

ping defined in (D1)-(D2). For any z ∈Dd[0,1], with χϵ ◦z denoting the component-wise application

of χϵ to z, the mapping z 7→ (z,χϵ ◦ z) is continuous at z almost surely for each realization of

χϵ. Furthermore, let ξn be a sequence of processes taking values in Dd[0,1] and adapted to filtra-

tions (Fn
t : 0≤ t≤ 1). Then χϵ ◦ ξn is adapted to the augmented filtrations Gn

t = σ(Fn
t ∪H), where

H= σ(Uj : j ≥ 1) (with the Uj from (D1)) is the sigma-algebra generated by the randomization in

defining χϵ, which is independent of the sequence of filtrations Fn
t . (See Lemma 6.1 of Kurtz and

Protter (1991).)

Remark 3. For a step function z1 ∈D[a, b], with jump points s1 < · · ·< sm (and s0 = a, sm+1 = b),

and a continuous function z2 on [a, b], we will always use the following definition of integration:∫ b

a

z1(s)dz2(s) =
m∑
j=0

z1(sj) (z2(sj+1)− z2(sj)) . (34)

Lemma 2 (Continuity of Approximate Stochastic Integration). Let (ξn1 , ξ
n
2 ) and (ξ1, ξ2) be

D2[0,1] functions such that jointly (ξn1 , ξ
n
2 )→ (ξ1, ξ2) with respect to the Skorohod metric, and ξ2 is

a continuous function. For any ϵ > 0, define the mapping Sϵ :D
2[0,1]→D[0,1] by

Sϵ(z1, z2)(t) =

∫ t

0

χϵ(z1(s))dz2(s), (35)

where (z1, z2)∈D2[0,1]. (Note that the integral is defined as in (34), since χϵ(z1) is always a step

function.) Then, almost surely for each realization of χϵ, we have

Sϵ(ξ
n
1 , ξ

n
2 )→ Sϵ(ξ1, ξ2)

with respect to the Skorohod metric.

Proof of Lemma 2. For fixed ϵ > 0, let τn
1 , τ

n
2 , . . . denote the jump times for χϵ(ξ

n
1 ), and let

τ1, τ2, . . . denote the jump times for χϵ(ξ1), all according to the definitions in (D1)-(D2). Since

ξ1 ∈D[0,1], for some finite M (depending on the particular realization of χϵ), there are only M

such jump discontinuities of χϵ(ξ1) (at τ1, . . . , τM) that are at least ϵ/2 in magnitude. Note that

(by Lemma 1) almost surely for each realization of χϵ, we have χϵ(ξ
n
1 )→ χϵ(ξ1) with respect to the

Skorohod metric. Thus, for n sufficiently large, there are also only M such jump discontinuities of
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χϵ(ξ
n
1 ) (at τ

n
1 , . . . , τ

n
M) that are at least ϵ/2 in magnitude. (See Chapter of Billingsley (1999).) We

denote τn
0 = τ0 = 0 and τn

M+1 = τM+1 = 1. To conclude the proof, note that

sup
0≤t≤1

|Sϵ(ξ
n
1 , ξ

n
2 )(t)−Sϵ(ξ1, ξ2)(t)|

≤
M∑
j=0

∣∣χϵ(ξ
n
1 (τ

n
j ))
(
ξn2 (τ

n
j+1)− ξn2 (τ

n
j )
)
−χϵ(ξ1(τj)) (ξ2(τj+1)− ξ2(τj))

∣∣
→ 0

as n→∞, since, as discussed in Remark 2 and Lemma 1, we have χϵ(ξ
n
1 (τ

n
j ))→ χϵ(ξ1(τj)) and

ξn2 (τ
n
j )→ ξ2(τj) for each j. □

Remark 4. In the setting of Theorem 1, we can replace the functions pk by functions pnk (possibly

different for each n) in the discrete approximations (11)-(15) from our derivation in Section 2.1

(along with the generalization to K ≥ 2 arms), as long as for each k, we have pnk → pk as n→∞

uniformly on compact subsets of their domain of definition. This allows us to accommodate slight

modifications of Thompson sampling. With such a modification, the proof of Theorem 1 would

remain unchanged.

Theorem 1. For the K-armed MAB, the dynamics of Thompson sampling, which are character-

ized by the processes Rn and Y n (as defined in (3) and (4), except with K arms), converge weakly

in D2K [0,1] as n→∞ to the unique strong solution of the SDE:

Rk(t) =

∫ t

0

pk(R(s), Y (s))ds (36)

Yk(t) =

∫ t

0

√
pk(R(s), Y (s))dBk(s) (37)

Rk(0) = Yk(0) = 0, k= 1, . . . ,K, (38)

where the Bk are independent standard Brownian motions.

Proof of Theorem 1. We start with the discrete approximation (11)-(15) from our derivation in

Section 2.1, but with arms k= 1, . . . ,K, instead of just arms k= 1,2. We denote the joint processes

via (Rn, Y n,Bn,Mn) = (Rn
k , Y

n
k ,Bn

k ,M
n
k : 1 ≤ k ≤ K), and recall that we interpolate them in a

piecewise constant fashion, which results in processes in D4K [0,1]. All of our weak convergence

theory will take place in Dd[0,1], for positive integer d, equipped with the Skorohod metric (see

Chapter 3 of Billingsley (1999)), which makes such spaces complete, separable metric spaces.

Our proof strategy is as follows. We will show that for every subsequence of (Rn, Y n), there is

a further subsequence which converges weakly to a limit that is a solution to the SDE. Because

the drift and dispersion functions, pk and
√
pk, of the SDE (36)-(38) are Lipschitz-continuous and
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bounded on their domain of definition, Theorem 5.2.9 of Karatzas and Shreve (1998) ensures that

the SDE has a unique strong solution. Thus, (Rn, Y n) must converge weakly to the unique strong

solution of the SDE.

By Lemma 3, the joint processes (Rn, Y n,Bn,Mn) are tight, and thus, Prohorov’s Theorem

(see Chapters 1 and 3 of Billingsley (1999)) ensures that for each subsequence, there is a further

subsequence which converges weakly to some limit process (R,Y,B,M) = (Rk, Yk,Bk,Mk : 1 ≤

k ≤K). From now on, we work with this further subsequence, and for notational simplicity, we

still index this further subsequence by n. So, (Rn, Y n,Bn,Mn)⇒ (R,Y,B,M). Since Mn consists

of martingale differences, by a Chebyshev bound, we have Mn
k (t)

P→ 0 for each k = 1, . . . ,K and

t ∈ (0,1] as n→∞, and thus, M is exactly equal to the DK [0,1] zero process. By Lemma 4, B is

a standard Brownian motion on RK .

Now define the processes Gn = (Gn
k : 1≤ k≤K) and G= (Gk : 1≤ k≤K), where

Gn
k(t) = pk(R

n(t), Y n(t)) (39)

Gk(t) = pk(R(t), Y (t)). (40)

Since the pk functions are continuous, we have

(Rn, Y n,Bn,Mn,Gn)⇒ (R,Y,B,M,G). (41)

Additionally, define the processes R̃n = (R̃n
k : 1≤ k≤K) and R̃= (R̃k : 1≤ k≤K), where

R̃n
k(t) =

∫ t

0

pk(R
n(s), Y n(s))ds (42)

R̃k(t) =

∫ t

0

pk(R(s), Y (s))ds. (43)

Recall that tj = j/n, and note that

Rn
k(t) =

1

n

⌊tn⌋∑
i=1

pk(R
n(ti−1), Y

n(ti−1))+Mn
k (t).

For each k, because Mn
k converges weakly to the D[0,1] zero process, and∣∣∣∣∣ 1n

⌊tn⌋∑
i=1

pk(R
n(ti−1), Y

n(ti−1))− R̃n
k(t)

∣∣∣∣∣≤ 1

n
,

we have

sup
0≤t≤1

∣∣∣Rn
k(t)− R̃n

k(t)
∣∣∣ P→ 0. (44)
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Thus, by the fact that integration is a continuous functional with respect to the Skorohod metric

(see Theorem 11.5.1 on page 383 of Whitt (2002)) and the Continuous Mapping Theorem, we have

from (41),

(Rn, Y n,Bn, R̃n,Gn)⇒ (R,Y,B, R̃,G). (45)

For any ϵ > 0, let χϵ be the random mapping defined in (D1)-(D2) (see Remark 2 and Lemma 1

for some basic properties of χϵ). Let χϵ ◦Gn and χϵ ◦G denote the component-wise applications of

χϵ to the vector-valued processes Gn and G. By Lemma 1 and the Continuous Mapping Theorem,

we have from (45),

(Rn, Y n,Bn, R̃n, χϵ ◦Gn)⇒ (R,Y,B, R̃,χϵ ◦G). (46)

Recall from (12), (15) and (39), that for each k,

Y n
k (t) =

∫ t

0

√
Gn

k(s−)dBn
k (s), (47)

and define the process Ŷ n = (Ŷ n
k : 1≤ k≤K) by

Ŷ n
k (t) =

∫ t

0

χϵ

(√
Gn

k(s−)
)
dBn

k (s). (48)

By Lemma 2 and the Continuous Mapping Theorem (with the mapping Fϵ in (35)), we have from

(46),

(Rn, Y n,Bn, R̃n, Ŷ n)⇒ (R,Y,B, R̃, Ŷ ), (49)

where the process Ŷ = (Ŷk : 1≤ k≤K) is defined by

Ŷk(t) =

∫ t

0

χϵ

(√
Gk(s−)

)
dBk(s) (50)

with Gk defined by (40). We also define the process Ỹ = (Ỹk : 1≤ k≤K) by

Ỹk(t) =

∫ t

0

√
Gk(s−)dBk(s). (51)

Note that both of the processes in (50) and (51) are well defined as Itô integrals, since by Lemma

4, the integrands (with the Gk defined in (40)) are non-anticipative with respect to the Brownian

motions Bk. (As defined in (D1)-(D2), χϵ depends on exogenous randomization that is independent

of the Bk.) By Lemma 1, because χϵ is an ϵ-uniform approximation, for each k,

E
[
sup
0≤t≤1

∣∣∣Y n
k (t)− Ŷ n

k (t)
∣∣∣]≤ ϵE

[
1

n

n∑
i=1

E
[

Ik(i)(Xk(i)−µn
k)

2

pk(Rn(ti−1), Y n(ti−1)) ·σ2
k

∣∣∣∣ Gn
i−1

]]1/2
= ϵ. (52)
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(Recall the expressions for Y n
k and Ŷ n

k in (47)-(48), as well as the definition of Gn
k in (39), of Bn

k

in (15), of Y n
k in (12), and of Gn

j in (2).) Similarly,

E
[
sup
0≤t≤1

∣∣∣Ŷk(t)− Ỹk(t)
∣∣∣]≤ ϵE [⟨Bk⟩1]1/2 = ϵ, (53)

where t 7→ ⟨Bk⟩t denotes the quadratic variation process for Bk. Putting together (44), (49)-(53)

and sending ϵ ↓ 0, we have

(Rn, Y n,Bn,Rn, Y n)⇒ (R,Y,B, R̃, Ỹ ). (54)

Recalling the definition of R̃ in (43) as well as that of Ỹ in (51) and Gk in (40), we see from (54)

that the limit process (R,Y,B) satisfies the SDE:

Rk(t) =

∫ t

0

pk(R(s), Y (s))ds (55)

Yk(t) =

∫ t

0

√
pk(R(s), Y (s))dBk(s), k= 1, . . . ,K. (56)

(Note that from (55)-(56), it is clear that (R,Y,B) is adapted to the (augmented) filtration Ft =

σ(FB
t ∪N ), where FB

t = σ (B(s) : 0≤ s≤ t), with N denoting the collection of all P-null sets.) □

In the following two lemmas, we show tightness and convergence to Brownian motion in support

of the proof of Theorem 1 above.

Lemma 3. The processes (Rn, Y n,Bn,Mn) defined in (11)-(15) (with k = 1, . . . ,K instead of k =

1,2) are tight in D4K [0,1].

Proof of Lemma 3. For the convenience of the reader, we recall that the processes can be

expressed as:

Rn
k(tj) =

1

n

j∑
i=1

Ik(i) (57)

Y n
k (tj) =

1√
n

j∑
i=1

Ik(i)
Xk(i)−µn

k

σk

(58)

Mn
k (tj) =

1

n

j∑
i=1

(Ik(i)− pk(R
n(ti−1), Y

n(ti−1))) (59)

Bn
k (tj) =

1√
n

j∑
i=1

Ik(i)(Xk(i)−µn
k)√

pk(Rn(ti−1), Y n(ti−1)) ·σk

, (60)

where tj = j/n, 0≤ j ≤ n, and recall that we continuously interpolate them to be piecewise constant

in between the tj. With a slight abuse of notation, let (Gn
t : 0 ≤ t ≤ 1) denote the continuous,

piecewise constant (and right-continuous) interpolation of the discrete-time filtration (Gn
j : 0≤ j ≤
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n) defined in (2), and note that (57)-(60) are all adapted to Gn
t . Also note that the processes in (57)

are uniformly bounded and increasing, and those in (58)-(60) are square-integrable martingales.

By Lemma 9, to show tightness of the joint processes (Rn, Y n,Bn,Mn), we just need to show

tightness of each component sequence of processes and each pairwise sum of component sequences

of processes. We use Lemma 10 to verify tightness in each case. Condition (T1) is easily verified

using a submartingale maximal inequality (for example, see page 13 of Karatzas and Shreve (1998)),

along with a union bound when dealing with pairwise sums of component processes. Conditions

(T2)-(T3) are also easily verified. For each individual component process, we can set αn(δ) = δ, and

for each pairwise sum of component processes, we can set αn(δ) = 4δ (by bounding via: (a+ b)2 ≤

2a2 +2b2), uniformly for all n in each case. □

Lemma 4. Following Lemma 3, for any subsequence of (Rn, Y n,Bn,Mn) that converges weakly in

D4K [0,1] to some limit process (R,Y,B,M), the component B is a standard Brownian motion on

RK. Moreover, R and Y are non-anticipative with respect to B, i.e., B(t+u)−B(t) is independent

of (R(s), Y (s)) for 0≤ s≤ t and u≥ 0.

Proof of Lemma 4. We apply the martingale functional central limit theorem stated in Lemma

11. Like in the proof of Lemma 3, with a slight abuse of notation, let (Gn
t : 0≤ t≤ 1) denote the

continuous, piecewise constant (and right-continuous) interpolation of the discrete-time filtration

(Gn
j : 0≤ j ≤ n) defined in (2), and note that the processes (Rn, Y n,Bn,Mn), as defined in (11)-(15)

(with k= 1, . . . ,K instead of k= 1,2), are adapted to the filtration Gn
t . The condition (M1) is easily

verified by noting that for a sequence of independent standard normal random variables N1, . . . ,Nn,

we have E [max1≤i≤n |Ni|] ≤
√
2 log(2n) using a Chernoff bound. The condition (M2) is similarly

straightforward to verify by noting that the (martingale difference) increments of Bn
k for different

pairs of k are conditionally uncorrelated with respect to the filtration Gn
t . After a straightforward

calculation, we see that the C matrix is the identity matrix, so the weak limit process is standard

Brownian motion. The non-anticipative fact follows from a straightforward characteristic function

argument, since in the pre-limit, Rn and Y n are non-anticipative with respect to Bn. □

4. Characterization via Stochastic Ordinary Differential Equations

In this section, we provide an alternative representation in terms of solutions of stochastic ODEs

for the limiting dynamics of Thompson sampling in both the MAB and linear bandit (with finitely

many fixed, non-random covariate vectors) settings, as derived in Sections 2.2 and 5.1 (in particular,

Remark 7). Theorem 2 is the main result. While we could have taken a first-principles approach

in its proof, we instead take a simpler approach by leveraging Theorems 1 and 4 and the fact

that in great generality, continuous (local) martingales, such as Itô integrals, can be represented as
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time-changed Brownian motion. We go on to develop Theorem 3, which covers the setting where

the pk functions are continuous, but not necessarily Lipschitz-continuous. This situation can arise,

for instance, when one uses different scalings for the prior variance.

Remark 5. Similar to Remark 4, in the setting of Theorem 2, we can replace the functions pk

by functions pnk (possibly different for each n) in the discrete approximations (27)-(29) from our

derivation in Section 2.2 (along with the generalization to K ≥ 2 arms), as long as for each k, we

have pnk → pk as n→∞ uniformly on compact subsets of their domain of definition.

Theorem 2. For the K-armed MAB, the dynamics of Thompson sampling, which are character-

ized by the processes Rn and Zn ◦Rn (as defined in (20) and (21), except with K arms), converge

weakly in D2K [0,1] as n→∞ to a solution of the stochastic ODE:

Rk(t) =

∫ t

0

pk(R(s),B ◦R(s))ds (61)

Rk(0) = 0, k= 1, . . . ,K, (62)

with Zn ◦Rn converging weakly to B ◦R, where B is a standard Brownian motion on RK.

Proof of Theorem 2. The proofs for the MAB and the linear bandit with finitely many fixed,

non-random covariate vectors are the same, so we only develop the proof for the MAB. We work

with a probability space (Ω,F ,P) supporting a standard Brownian motion B on RK , with natural

filtration FB
t = σ (B(s) : 0≤ s≤ t). We will work with the corresponding augmented filtration Ft =

σ(FB
t ∪N ), where N is the collection of all P-null sets. (See Chapter 2.7 of Karatzas and Shreve

(1998) for details.) By Theorem 1, there exists a solution (R,Y ) to the SDE (36)-(38) on this

probability space with respect to the standard Brownian motion B. Writing (37) in integral form,

because the pk functions are bounded,

Yk(t) =

∫ t

0

√
pk(R(s), Y (s))dBk(s), k= 1, . . . ,K

are continuous Ft-martingales with quadratic variation processes

⟨Yk⟩t =
∫ t

0

pk(R(s), Y (s))ds, k= 1, . . . ,K,

and for k ̸= k′, the cross-variation processes ⟨Yk, Yk′⟩t = 0 since Bk and Bk′ are independent. Note

that integrating (36) (in the Riemann sense) yields ⟨Yk⟩t =Rk(t), k= 1, . . . ,K, which are continuous

and strictly increasing processes since the pk functions are bounded and strictly positive. Define

R−1
k (t) = inf{s≥ 0 :Rk(s)≥ t}, k= 1, . . . ,K.

Now, we recall that in great generality, continuous martingales can be represented as time-changed

Brownian motions. In particular, by a theorem due to F.B. Knight (see for instance Proposition
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18.8 on page 355 of Kallenberg (2002) or Theorem 1.10 on page 183 of Revuz and Yor (1999)),

for k= 1, . . . ,K, we have that B̃k(t) := Yk(R
−1
k (t)) are independent standard Brownian motions (at

least until time t=Rk(1)) with respect to the filtration F B̃
t = σ

(
B̃(s) : 0≤ s≤ t

)
. Thus, we have

B̃k(Rk(t)) = Yk(t), and substituting this representation into the SDE (36), we obtain the stochastic

ODE:

Rk(t) =

∫ t

0

pk(R(s), B̃ ◦R(s))ds, k= 1, . . . ,K. (63)

So with respect to the smaller filtration F B̃
t , the SDE solution R(t) satisfies the stochastic ODE

(63), which coincides with (61). □

Theorem 3. For the K-armed MAB, consider Thompson sampling evolving with any continuous

(not Lipschitz) functions pk : [0,1]K × RK → [0,1]. Then, the weak limit points in D2K [0,1] as

n→∞ of the processes Rn and Zn ◦Rn (as defined in (20) and (21), except with K arms) are

solutions of the stochastic ODE:

Rk(t) =

∫ t

0

pk(R(s),B ◦R(s))ds (64)

Rk(0) = 0, k= 1, . . . ,K, (65)

with B ◦R being a weak limit of Zn ◦Rn, where B is a standard Brownian motion on RK.

Proof of Theorem 3. Once again, the proofs for the MAB and the linear bandit with finitely

many fixed, non-random covariate vectors are the same, so we only develop the proof for the

MAB. We start with the discrete approximation (27)-(29) and (21)-(22) from our derivation in

Section 2.2, but with arms k= 1, . . . ,K, instead of just arms k= 1,2. We denote the joint processes

via (Rn,Zn,Mn) = (Rn
k ,Z

n
k ,M

n
k : 1 ≤ k ≤K), and recall that we interpolate them in a piecewise

constant fashion, which results in processes in D3K [0,1]. All of our weak convergence theory will

take place in Dd[0,1], for positive integer d, equipped with the Skorohod metric (see Chapter 3 of

Billingsley (1999)), which makes such spaces complete, separable metric spaces.

Consider a weakly convergent subsequence of (Rn,Zn), which we will still index by n for nota-

tional simplicity. Then jointly, (Rn,Zn,Mn)⇒ (R,Z,M), where M is the DK [0,1] zero process.

(Note that since Mn consists of martingale differences, by a Chebyshev bound, we have Mn
k (t)

P→ 0

for each k = 1, . . . ,K and t ∈ (0,1] as n → ∞. Also, Mn is a tight sequence of processes using

what we showed in Lemma 3.) By Donsker’s Theorem (see Chapter 3 of Billingsley (1999)), Z is

a standard Brownian motion on RK .

By the continuity of function composition (see Theorem 13.2.2 on page 430 of Whitt (2002)),

since the Brownian motion limit process Z has continuous sample paths and the limit process R

must have non-decreasing sample paths, we have by the Continuous Mapping Theorem,

(Rn,Zn,Mn,Zn ◦Rn)⇒ (R,Z,M,Z ◦R). (66)
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Now define the processes Gn = (Gn
k : 1≤ k≤K) and G= (Gk : 1≤ k≤K), where

Gn
k(t) = pk(R

n(t),Zn ◦Rn(t))

Gk(t) = pk(R(t),Z ◦R(t)).

Since the pk functions are continuous, we have from (66),

(Rn,Zn,Mn,Gn)⇒ (R,Z,M,G). (67)

Additionally, define the processes R̃n = (R̃n
k : 1≤ k≤K) and R̃= (R̃k : 1≤ k≤K), where

R̃n
k(t) =

∫ t

0

pk(R
n(s),Zn ◦Rn(s))ds

R̃k(t) =

∫ t

0

pk(R(s),Z ◦R(s))ds. (68)

Recall that tj = j/n, and note that

Rn
k(t) =

1

n

⌊tn⌋∑
i=1

pk(R
n(ti−1),Z

n ◦Rn(ti−1))+Mn
k (t).

For each k, because Mn
k converges weakly to the D[0,1] zero process, and∣∣∣∣∣ 1n

⌊tn⌋∑
i=1

pk(R
n(ti−1),Z

n ◦Rn(ti−1))− R̃n
k(t)

∣∣∣∣∣≤ 1

n
,

we have

sup
0≤t≤1

∣∣∣Rn
k(t)− R̃n

k(t)
∣∣∣ P→ 0. (69)

Thus, by the fact that integration is a continuous functional with respect to the Skorohod metric

(see Theorem 11.5.1 on page 383 of Whitt (2002)) and the Continuous Mapping Theorem, we have

from (67),

(Rn,Zn, R̃n)⇒ (R,Z, R̃). (70)

Together, (69)-(70) yield

(Rn,Zn,Rn)⇒ (R,Z, R̃),

and recalling the definition of R̃ in (68), the proof is complete. □
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5. Diffusion Approximations for Linear Bandits

The linear bandit is a useful generalization of the MAB to situations where the arm means are

no longer estimated separately, but information is shared so that the rewards for one arm provide

information about the means of other arms. In this section, we develop weak diffusion limits for

Thompson sampling when the set of actions available to the decision-maker in each time period

is finite and possibly time-varying/stochastic (Section 5.1), as well as infinite (Section 5.2). (In

accordance with much of the literature on linear bandits, here we choose to use the term action

instead of arm.)

The results in this section also indicate that one may derive diffusion approximations for TS

in more complex bandit models, going beyond the multi-armed bandit setting, by using different

state processes. In the multi-armed setting, the state processes (suitably normalized/standardized)

essentially track the evolution of the sample mean reward estimates for each arm over time. In

the linear bandit setting, the state processes we define below essentially track the evolution of the

ordinary least squares estimate of the unknown linear regression parameter vector over time.

5.1. Finitely Many Actions

We consider a d-dimensional linear bandit model, where at time i= 1, . . . , n, the reward for playing

action k, k= 1, . . . ,K, is:

Xk(i) = (θn)⊤Ak(i)+ ϵk(i), ϵk(i)
iid∼N(0,1). (71)

For each k, the covariate vector Ak(i) is iid exogenously generated from some distribution and is

revealed to the decision-maker prior to the decision for time i. The distribution is allowed to be a

point mass so that Ak(i) is just a (known) fixed, non-random vector that does not change with i.

The parameter vector θn is unknown and must be learned. With a time horizon of n, we assume

that θn = θ∗√
n
, where θ∗ is a fixed vector that does not change with n. This scaling assumption

allows us to obtain a diffusion limit, just like the µ1−µ2√
n

arm mean gap assumption in Section 2.

Remark 6. In this section, the finite action set is allowed to change in time, but will always have

a fixed K number of elements. We refer to them simply as actions k = 1, . . . ,K, and we refer to

their associated Ak(i) (which can change with the time index i) as covariate vectors.

Similar to our choice of prior for the MAB model, we put a N(0, (b2n)−1I) prior on θn, where I is

the identity matrix. For linear bandits, the probabilities of playing various actions parallel (5)-(8)
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and (23)-(26) for MABs, except that the posterior distribution of θn is now obtained through reg-

ularized least-squares regression. To describe the dynamics of Thompson sampling in this setting,

it suffices to keep track of two processes: V n = (V n
1 , . . . , V n

K) and Sn = (Sn
1 , . . . , S

n
K), defined via

V n
k (tj) =

1

n

j∑
i=1

Ik(i)Ak(i)Ak(i)
⊤ (72)

Sn
k (tj) =

1√
n

j∑
i=1

Ik(i)Ak(i)ϵk(i), k= 1, . . . ,K. (73)

Conditional on the information collected up to and including time j:

Gn
j = σ (Ak(i), Ik(i)Xk(i) : k= 1, . . . ,K, 1≤ i≤ j) , (74)

we sample a vector from the posterior distribution of θn (up to a 1/
√
n scaling factor):

θ̃n(tj+1) =

(
b2I +

∑
k

V n
k (tj)

)−1∑
k

(V n
k (tj)θ∗ +Sn

k (tj))+

(
b2I +

∑
k

V n
k (tj)

)−1/2

Nj+1 (75)

where the Nj+1
iid∼ N(0, Id×d) are exogenously generated in accordance with the randomization of

Thompson sampling. The conditional probability of playing action k at time j+1 is then

pk(A(j+1), V n(tj), S
n(tj))

= P
(
θ̃n(tj+1)

⊤Ak(j+1)>max
k′ ̸=k

θ̃n(tj+1)
⊤Ak′(j+1)

∣∣∣A(j+1), V n(tj), S
n(tj)

)
. (76)

To obtain convergence of the processes V n and Sn in (72)-(73), we define for each k:

Λk(V
n(tj), S

n(tj)) =E
[
pk(A(j+1), V n(tj), S

n(tj)) ·Ak(j+1)Ak(j+1)⊤
∣∣∣ V n(tj), S

n(tj)

]
. (77)

This allows us to rewrite:

V n
k (tj) =

1

n

j∑
i=1

Λk(V
n(ti−1), S

n(ti−1))+Mn
k (tj) (78)

Sn
k (tj) =

j∑
i=1

Λk(V
n(ti−1), S

n(ti−1))
1/2 (Bn

k (ti)−Bn
k (ti−1)) , k= 1, . . . ,K, (79)

where

Mn
k (tj) =

1

n

j∑
i=1

(
Ik(i)Ak(i)Ak(i)

⊤ −Λk(V
n(ti−1), S

n(ti−1))
)

(80)

Bn
k (tj) =

1√
n

j∑
i=1

Λk(V
n(ti−1), S

n(ti−1))
−1/2Ik(i)Ak(i)ϵk(i). (81)
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Like before, (Ik(i) : 1 ≤ k ≤ 2) is a multinomial random variable with a single trial and success

probabilities pk(A(i), V
n(ti−1), S

n(ti−1)). We continuously interpolate all of these processes to be

piecewise constant.

As n→∞, Mn
k and Bn

k converge weakly to the zero process in D2d[0,1] and a Brownian motion

on Rd with covariance CkC
−1
k , where Ck =E[Ak(1)Ak(1)

⊤] and C−1
k is its generalized inverse. Thus,

we expect (78)-(79) to be a discrete approximation to the SDE:

Vk(t) =

∫ t

0

Λk(V (s), S(s))ds (82)

Sk(t) =

∫ t

0

Λk(V (s), S(s))1/2dBk(s) (83)

Vk(0) = 0, Sk(0) = 0, k= 1, . . . ,K, (84)

where V = (V1, . . . , VK), S = (S1, . . . , SK), and each Bk is an independent standard Brownian motion

on Rd.

To keep track of the regret, we consider the processes

Rn
k(tj) =

1

n

j∑
i=1

Ik(i)Ak(i), k= 1, . . . ,K. (85)

Similar to before, we define for each k,

Λ̃k(V
n(tj), S

n(tj)) =E
[
pk(A(j+1), V n(tj), S

n(tj)) ·Ak(j+1)
∣∣∣ V n(tj), S

n(tj)

]
, (86)

which allows us to re-write:

Rn
k(tj) =

1

n

j∑
i=1

Λ̃k(V
n(ti−1), S

n(ti−1))+ M̃n
k (tj), (87)

where

M̃n
k (tj) =

1

n

j∑
i=1

(
Ik(i)Ak(i)− Λ̃k(V

n(ti−1), S
n(ti−1))

)
(88)

We continuously interpolate all of these processes to be piecewise constant. As before, when n→∞,

we expect each Rn
k in (85) to converge weakly in Dd[0,1] to

Rk(t) =

∫ t

0

Λ̃k(V (s), S(s))ds. (89)

Then, the (1/
√
n re-scaled) regret process in the limit system is tE[maxk θ

⊤
∗ Ak(1)]−

∑
k θ

⊤
∗ Rk(t).

For a rigorous statement of the above results, see Theorem 4 in Section 3.

Theorem 4 covers the finite-action linear bandit setting. Its proof follows from a direct extensions

of the proof of Theorem 1, and is thus omitted.
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Theorem 4. For the linear bandit with finitely many actions, the dynamics of Thompson sampling,

which are characterized by the processes V n and Sn (as defined in (72) and (73)), converge weakly

in D2Kd[0,1] as n→∞ to the unique strong solution of the SDE:

Vk(t) =

∫ t

0

Λk(V (s), S(s))ds (90)

Sk(t) =

∫ t

0

Λk(V (s), S(s))1/2dBk(s) (91)

Vk(0) = 0, Sk(0) = 0, k= 1, . . . ,K, (92)

with the Λk defined in (77), and where each Bk is an independent standard Brownian motion on

Rd.

Furthermore, in the limit, the (1/
√
n re-scaled) regret process is given by tE[maxk θ

⊤
∗ Ak(1)]−∑

k θ
⊤
∗ Rk(t), where

Rk(t) =

∫ t

0

Λ̃k(V (s), S(s))ds, k= 1, . . . ,K, (93)

with the Λ̃k defined in (86).

Remark 7. When the covariate distribution for each action is a point mass, so that for each

time i, Ak(i) is equal to some fixed vector Ak for each action k, then the above theory simplifies

significantly. In particular, the processes V n
k and Sn

k defined in (72)-(73) simplify:

V n
k (tj) =

1

n

j∑
i=1

Ik(i)Ak(i)Ak(i)
⊤ =AkA

⊤
k

1

n

j∑
i=1

Ik(i) =AkA
⊤
k R

n
k(tj) (94)

Sn
k (tj) =

1√
n

j∑
i=1

Ik(i)Ak(i)ϵk(i) =Ak

1√
n

j∑
i=1

Ik(i)ϵk(i) =AkY
n
k (tj), k= 1, . . . ,K, (95)

with the Rn
k and Y n

k processes defined as in (3)-(4) from our derivations for the MAB. (Note that

Xk(i)−µn
k from the MAB setting is exactly equivalent to ϵk(i) in this linear bandit setting.) There-

fore, the processes Rn = (Rn
1 , . . . ,R

n
K) and Y n = (Y n

1 , . . . , Y n
K) completely capture the dynamics of

Thompson sampling in this linear setting with finitely many fixed, non-random covariate vectors.

SDE and stochastic ODE weak limits, similar to the ones we encountered earlier in (16)-(18) and

(30)-(31), respectively, also hold here. The difference is that the functions pk, as defined (in general

for K arms) in (32) and (33), need to be modified to incorporate least-squares estimation of the

parameter vector θn, which involves the covariate vectors Ak. Indeed, we can replace each pk by

Λk defined via (cf. (76)-(77)):

Λk(R
n(tj), Y

n(tj)) = P
(
θ̃n(tj+1)

⊤Ak >max
k′ ̸=k

θ̃n(tj+1)
⊤Ak′

∣∣∣Rn(tj), Y
n(tj)

)
, (96)
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where now (cf. (75)):

θ̃n(tj+1) = Cn(tj)
−1
∑
k

(
AkA

⊤
k θ∗R

n
k(tj)+AkY

n
k (tj)

)
+ Cn(tj)

−1/2Nj+1, (97)

with

Cn(tj) = b2I +
∑
k

AkA
⊤
k R

n
k(tj). (98)

5.2. Infinitely Many Actions

We again consider a d-dimensional linear bandit model, where at time i= 1, . . . , n, the reward for

playing action A(i)∈A is:

X(i) = (θn)⊤A(i)+ ϵ(i), ϵ(i)
iid∼N(0,1). (99)

But here, the set of possible actions A is infinite, and for illustration, we take A to be the unit

ℓ2-ball in Rd, which is an important setting in its own right. Once again, the parameter vector θn

is unknown and must be learned. And with a time horizon of n, we assume that θn = θ∗√
n
, where

θ∗ is a fixed vector that does not change with n.

Remark 8. In this section, the action set A is uncountably infinite and does not change with

time. Hence, we do not enumerate the actions like we did in the finite-action setting and simply

refer to them as elements A∈A.

Similar to the finite-action setting of previous section, to describe the dynamics of Thompson

sampling in this setting, it suffices to keep track of two processes:

V n(tj) =
1

n

j∑
i=1

A(i)A(i)⊤ (100)

Sn(tj) =
1√
n

j∑
i=1

A(i)ϵ(i), (101)

where A(i) is the action chosen at time i. Conditional on the information collected up to and

including time j:

Gn
j = σ (A(i), X(i) : 1≤ i≤ j) , (102)

we sample a vector from the posterior distribution of θn (up to a 1/
√
n scaling factor):

θ̃n(tj+1) =
(
b2I +V n(tj)

)−1
(V n(tj)θ∗ +Sn(tj))+

(
b2I +V n(tj)

)−1/2
Nj+1, (103)
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where the Nj+1
iid∼ N(0, Id×d) are exogenously generated in accordance with the randomization of

Thompson sampling. Then, the action A(j+1)∈A which maximizes θ̃n(tj+1)
⊤A(j+1) is

A(j+1)=
θ̃n(tj+1)∥∥∥θ̃n(tj+1)

∥∥∥ . (104)

To obtain convergence of the processes V n and Sn in (100)-(101), we define:

Λ(V n(tj), S
n(tj)) =E

 θ̃n(tj+1)θ̃
n(tj+1)

⊤∥∥∥θ̃n(tj+1)
∥∥∥2

∣∣∣∣∣ V n(tj), S
n(tj)

 . (105)

This allows us to rewrite:

V n(tj) =
1

n

j∑
i=1

Λ(V n(ti−1), S
n(ti−1))+Mn(tj) (106)

Sn(tj) =

j∑
i=1

Λ(V n(ti−1), S
n(ti−1))

1/2 (Bn(ti)−Bn(ti−1)) , (107)

where

Mn(tj) =
1

n

j∑
i=1

 θ̃n(ti)θ̃
n(ti)

⊤∥∥∥θ̃n(ti)∥∥∥2 −Λ(V n(ti−1), S
n(ti−1))

 (108)

Bn(tj) =
1√
n

j∑
i=1

Λ(V n(ti−1), S
n(ti−1))

−1/2 θ̃n(ti)∥∥∥θ̃n(ti)∥∥∥ϵ(i). (109)

We continuously interpolate all of these processes to be piecewise constant.

As n→∞, Mn and Bn converge weakly to the zero process in D2d[0,1] and standard Brownian

motion on Rd. Thus, we expect (106)-(107) to be a discrete approximation to the SDE:

V (t) =

∫ t

0

Λ(V (s), S(s))ds (110)

S(t) =

∫ t

0

Λ(V (s), S(s))1/2dB(s) (111)

V (0) = 0, S(0) = 0, (112)

where B is a standard Brownian motion on Rd.

To keep track of the regret, we consider the process

Rn(tj) =
1

n

j∑
i=1

θ̃n(ti)∥∥∥θ̃n(ti)∥∥∥ . (113)

Similar to before, we define

Λ̃(V n(tj), S
n(tj)) =E

 θ̃n(tj+1)∥∥∥θ̃n(tj+1)
∥∥∥
∣∣∣∣ V n(tj), S

n(tj)

 , (114)
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which allows us to re-write:

Rn(tj) =
1

n

j∑
i=1

Λ̃(V n(ti−1), S
n(ti−1))+ M̃n(tj), (115)

where

M̃n(tj) =
1

n

j∑
i=1

 θ̃n(ti)∥∥∥θ̃n(ti)∥∥∥ − Λ̃(V n(ti−1), S
n(ti−1))

 . (116)

We continuously interpolate all of these processes to be piecewise constant. As before, when n→∞,

we expect Rn in (113) to converge weakly in Dd[0,1] to

R(t) =

∫ t

0

Λ̃(V (s), S(s))ds. (117)

Then, the (1/
√
n re-scaled) regret process in the limit system is t∥θ∗∥ − θ⊤∗ R(t). For a rigorous

statement of the above results, see Theorem 5 in Section 3.

Theorem 5 covers the infinite-action linear bandit setting. Its proof follows from a direct exten-

sions of the proof of Theorem 1, and is thus omitted.

Theorem 5. For the linear bandit with the unit ℓ2-ball as the action space, the dynamics of Thomp-

son sampling, which are characterized by the processes V n and Sn (as defined in (100) and (101)),

converge weakly in D2d[0,1] as n→∞ to the unique strong solution of the SDE:

V (t) =

∫ t

0

Λ(V (s), S(s))ds (118)

S(t) =

∫ t

0

Λ(V (s), S(s))1/2dB(s) (119)

V (0) = 0, S(0) = 0, (120)

with Λ defined in (105), and where B is a standard Brownian motion on Rd.

Furthermore, in the limit, the (1/
√
n re-scaled) regret process is given by t∥θ∗∥− θ⊤∗ R(t), where

R(t) =

∫ t

0

Λ̃(V (s), S(s))ds, (121)

with Λ̃ defined in (114).

6. Applications of Diffusion Approximations

6.1. General Reward Distributions and Posterior Approximations

In this section, we study Thompson sampling with other (non-normal) reward distributions and

priors in the MAB setting. We show that Thompson sampling satisfies a general invariance princi-

ple, which indicates that in 1/
√
n-scale gap regimes, the behavior of Thompson sampling is largely
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independent of the particular characteristics of the arm reward distributions as well as that of prior

distributions. In general, the diffusion limits all coincide with the limit for normally-distributed

rewards and priors. We also point out that in minimax gap regimes, using a Laplace approximation

of the posterior distribution leads to the same weak diffusion limits. This observation is in agree-

ment with the frequentist view of Thompson sampling, in which sampling from the exact posterior

distribution is not emphasized beyond its usefulness as a principled means of exploration.

For the rewards of different arms, we consider a general one-dimensional parametric family {Fµ :

µ∈Θ} parameterized by mean µ, where Θ is a small open interval. For each arm k, we consider a

sequence of distributions (CDFs) F n
k from this family, with corresponding means µn

k ∈Θ. We use

σn
k to denote the corresponding standard deviations and Qn

k to denote the corresponding quantile

functions. To keep our derivations as concrete as possible in this section, we focus on the two-armed

MAB setting, but it is easy to verify that Theorem 6 extends to multi-armed settings, following

the discussion in Section 2.3. We assume there exists µ0 ∈ Θ such that for each arm k, µn
k → µ0

and µn
1 −µn

2 =∆/
√
n for some fixed ∆> 0. (Arm 1 is optimal.) We also assume there exists σ0 > 0

such that for each arm k, σn
k → σ0. As before, we work with a “triangular array” setup where for

each n and each arm k, the rewards Xk(i), i= 1, . . . , n are iid from the distribution F n
k .

We assume the following conditions A1-A4 hold. These conditions allow us to obtain a suitable

normal approximation for the posterior distribution of the mean; see Proposition 2 in Appendix

A. (Proposition 2 is developed for models with general parameterization, with the models param-

eterized by mean in this section being a special case.) For the family Fµ, l(µ,x) denotes the

log-likelihood function (observed values are plugged into the x argument), and l(m)(µ,x) denotes

the mth derivative with respect to µ. An expectation taken with respect to Fµ is written as Eµ[·].
Fisher information evaluated at µ is given by I(µ) =−Eµ[l(2)(µ,X)], which in this setting is equal

to the variance of Fµ. Also, Qµ denotes the quantile function of Fµ.

(A1) The set {x : l(µ,x)> 0} is the same for all µ ∈Θ. For each x, l(µ,x) is three-times differ-

entiable with respect to µ. Both l(µ,x) and l(2)(µ,x) are jointly continuous with respect to µ and

x.

(A2) At each µ∈Θ, differentiation and integration can be interchanged so that:

Eµ
[
l(1)(µ,X)

]
= 0 (122)

Eµ
[
l(2)(µ,X)

]
=−Eµ

[
l(1)(µ,X)2

]
. (123)

(A3) For each δ > 0, there is an ϵ > 0 such that for all µ∈Θ,

sup
µ′:|µ−µ′|≥δ

Eµ[l(µ′,X)]≤Eµ[l(µ,X)]− ϵ. (124)

Also, infµ∈Θ I(µ)> 0.



29

(A4) There is a function η1 and a continuous function η2 such that for all x:

η1(x)≥ sup
µ∈Θ

|l(µ,x)| ∨
∣∣l(2)(µ,x)∣∣ (125)

η2(x)≥ sup
µ∈Θ

∣∣l(3)(µ,x)∣∣ (126)∫ 1

0

sup
µ∈Θ

ηi(Qµ(y))dy <∞, i= 1,2. (127)

The conditions A1-A3 are standard for parametric statistical estimation problems. Condition

A4 is a sufficient condition that ensures the convergence to normality of the posterior distri-

bution is suitably uniform in µ. It is not restrictive since, for example, it is easily satisfied by

distributions with bounded support, given some smoothness of the log-likelihood function l(µ,x).

Conditions weaker than A1-A4 suffice for location-scale families of distributions. When dealing

with such families of distributions related by simple linear transformations, we can, for example,

weaken condition A4—we just need a function η satisfying η(x) ≥ supµ∈Θ |l(µ,x)| for all x and∫ 1

0
supµ∈Θ η(Qµ(y))dy <∞.

In the Thompson sampling algorithm, for each arm k, we put a prior on the arm mean such that

there is positive density in a neighborhood of µ0. For simplicity, we assume that the prior does not

change with n in the triangular array setup. We emphasize that the prior need not be a conjugate

prior for the reward distribution.

For simplicity, we focus on the two-armed MAB setting in our derivations, but it is easy to

verify that Theorem 8 extends to multi-armed settings, as discussed in Section 2.3. As in Section

2.1, to obtain an SDE approximation, it suffices to consider the two processes Rn = (Rn
1 ,R

n
2 ) and

Y n = (Y n
1 , Y n

2 ) defined via:

Rn
k(tj) =

1

n

j∑
i=1

Ik(i) (128)

Y n
k (tj) =

1√
n

j∑
i=1

Ik(i)
Xk(i)−µn

k

σn
k

, (129)

which we interpolate to be piecewise constant. We will describe the dynamics of Thompson sampling

after time ⌊ϵn⌋ for some arbitrarily small ϵ∈ (0,1). At time ⌊ϵn⌋, we assume that arm 1 has been

played ⌊ϵn · α⌋ times (and arm 2 the remainder), for any α ∈ (0,1). Then at a later time j + 1,

having collected history:

Gn
j = σ (Ik(i), Ik(i)Xk(i) : k= 1,2, 1≤ i≤ j) , (130)

for each arm k, we sample a value µ̃n
k(j+1) from the posterior distribution of µn

k . The probability

of playing the optimal arm 1 is

P
(
µ̃n
1 (j+1)> µ̃n

2 (j+1)
∣∣ Gn

j

)
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= P
(√

n (µ̃n
1 (j+1)− µ̂n

1 (j+1))+
Y n
1 (tj)σ

n
1

Rn
1 (tj)

+∆>

√
n (µ̃n

2 (j+1)− µ̂n
2 (j+1))+

Y n
2 (tj)σ

n
2

Rn
2 (tj)

∣∣∣∣ Gn
j

)
, (131)

where for arm k, using the data collected through time j, µ̂n
k(j+1) is the sample mean estimate.

Then, assuming the conditions A1-A4 are satisfied for the family of distributions {Fµ : µ ∈ Θ},

Proposition 2 ensures that for each arm k, as n→∞ (with j ≥ ϵn):

sup
x∈R

∣∣∣∣∣P (√n (µ̃n
k(j+1)− µ̂n

k(j+1))≤ x | Gn
j

)
−Φ

(
x
√

Rn
k(tj)

σn
k

)∣∣∣∣∣⇒ 0. (132)

Therefore, with probability converging to 1 as n → ∞, (131) is asymptotically equivalent to

p1(R
n, Y n), where for u= (u1, u2) and v= (v1, v2),

p1(u, v) =Φ

(
v1σ0u

−1
1 − v2σ0u

−1
2 +∆

σ0

√
u−1
1 +u−1

2

)
. (133)

And the probability of playing the sub-optimal arm 2 is asymptotically equivalent to p2(R
n, Y n) =

1−p1(R
n, Y n). Continuing the derivation like we did in Section 2.1 leads to the following theorem,

whose proof is very similar to that of Theorem 1 and is thus omitted.

Theorem 6. Consider a two-armed bandit where each arm’s reward distribution comes from a

parametric model satisfying conditions A1-A4. Then the dynamics of Thompson sampling, which

are described by the processes Rn = (Rn
1 ,R

n
2 ) and Y n = (Y n

1 , Y n
2 ) (defined in (128)-(129)), converge

weakly in D4[ϵ,1] as n→∞ to the processes R= (R1,R2) and Y = (Y1, Y2), which are unique strong

solutions of the SDE:

Rk(t) =Rk(ϵ)+

∫ t

ϵ

pk(R(s), Y (s))ds (134)

Yk(t) = Yk(ϵ)+

∫ t

ϵ

√
pk(R(s), Y (s))dBk(s), k= 1,2, (135)

R1(ϵ) = ϵα, R2(ϵ) = ϵ(1−α), (136)

Y1(ϵ) =B1(ϵα), Y2(ϵ) =B2(ϵ(1−α)), (137)

where the Bk are independent standard Brownian motions.

As in Section 2.2, we can also obtain similar corresponding stochastic ODE representations of the

SDEs (134)-(137).
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6.2. Model Mis-specification

We use almost the same setup as in Section 6.1, with the following differences. Regarding the

posterior distribution for each arm mean, we allow for the possibility that Thompson sampling

may be designed for a family of (log-)likelihoods {l(µ,x) : µ∈Θ} that are mis-specified relative to

the true family of reward distributions {Fµ : µ ∈Θ}. With this consideration in mind, we assume

that the mis-specified log-likelihood l(µ,x), together with the distributional family {Fµ : µ ∈ Θ}
(with quantile functions Qµ), satisfies A1-A4 with the following exceptions. In A2, we assume that

(122) holds, but we do not assume that (123) holds. In A3, in the place of the Fisher information

I(µ), we have the mis-specified version of Fisher information defined as:

I∗(µ) =−Eµ[l(2)(µ,X)]. (138)

We additionally assume that Fµ′ ⇒ Fµ for each µ∈Θ as µ′ → µ.

By slightly modifying Proposition 2, and following the derivation as in Section 6.1, we have the

following. With probability converging to 1 as n→∞, the probability of playing the optimal arm

1 is asymptotically equivalent to p∗1(R
n, Y n), where for u= (u1, u2) and v= (v1, v2),

p∗1(u, v) =Φ

(
v1σ0u

−1
1 − v2σ0u

−1
2 +∆√

I∗(µ0)(u
−1
1 +u−1

2 )

)
. (139)

And the probability of playing the sub-optimal arm 2 is asymptotically equivalent to p∗2(R
n, Y n) =

1− p∗1(R
n, Y n). We then obtain the following theorem, whose proof is similar to previous ones and

is thus omitted. Unlike the fragility results from Fan and Glynn (2021), in the diffusion regime,

the behavior of algorithms such as Thompson sampling changes more smoothly with respect to

increasing degrees of model mis-specification.

Theorem 7. Under the assumptions described above, the dynamics of mis-specified Thompson

sampling, which are described by the processes Rn = (Rn
1 ,R

n
2 ) and Y n = (Y n

1 , Y n
2 ) (defined in (128)-

(129)), converge weakly in D4[ϵ,1] as n→∞ to the processes R= (R1,R2) and Y = (Y1, Y2), which

are unique strong solutions of the SDE:

Rk(t) =Rk(ϵ)+

∫ t

ϵ

p∗k(R(s), Y (s))ds (140)

Yk(t) = Yk(ϵ)+

∫ t

ϵ

√
p∗k(R(s), Y (s))dBk(s), k= 1,2, (141)

R1(ϵ) = ϵα, R2(ϵ) = ϵ(1−α), (142)

Y1(ϵ) =B1(ϵα), Y2(ϵ) =B2(ϵ(1−α)), (143)

where the Bk are independent standard Brownian motions.

As in Section 2.2, we can also obtain similar corresponding stochastic ODE representations of the

SDEs (140)-(143).
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6.3. Bootstrap-based Exploration

The bootstrap (Efron 1979), a powerful way to approximate the sampling distributions of estimators

through resampling, as well as related ideas such as subsampling, have recently been proposed for

exploration in bandit problems (Baransi et al. 2014, Eckles and Kaptein 2014, Osband and Van Roy

2015, Tang et al. 2015, Elmachtoub et al. 2017, Vaswani et al. 2018, Kveton et al. 2019a,b, 2020b,a,

Baudry et al. 2020). In this section, we consider the most basic implementation of bootstrapping for

exploration in MABs, where in each time period, a single bootstrapped (sample) mean is sampled

for each arm, and the arm with the greatest bootstrapped (sample) mean is played. We will refer

to this as boostrap-based exploration. We find that the weak diffusion limits for bootstrap-based

exploration with general reward distributions all coincide with the limit for Thompson sampling

with normally-distributed rewards and priors (and also Thompson sampling with general reward

distributions and priors, as we saw in Theorem 6). Thompson sampling with normally-distributed

rewards and priors is known to be essentially optimal (up to a
√

log(K) factor, where K is the

number of arms) in minimax gap regimes, from the perspective of expected regret (Agrawal and

Goyal 2017). Thus, the fact that the simplest implementation of bootstrapping yields the same

behavior as that of Thompson sampling in these minimax gap regimes suggests that boostrapping

can indeed be a very effective means of exploration in bandit problems.

We assume the same model setup described in the second paragraph of Section 6.1. However,

instead of assuming A1-A4, we assume the following conditions B1-B2. These conditions allow

us to obtain a suitable normal approximation for bootstrapping the mean; see Proposition 3 in

Appendix A.

(B1) For each µ∈Θ, Fµ′ ⇒ Fµ as µ′ → µ.

(B2) There exists a function η3 such that η3(y)≥ supµ∈ΘQµ(y)
2 for all y ∈ (0,1) and

∫ 1

0
η3(y)dy <

∞.

Again, we focus on the two-armed MAB setting in our derivations, but it is easy to verify that

Theorem 8 extends to multi-armed settings, as discussed in Section 2.3. As in Sections 2.1 and

6.1, to obtain an SDE approximation, it suffices to consider the two processes Rn = (Rn
1 ,R

n
2 ) and

Y n = (Y n
1 , Y n

2 ) defined in (128)-(129). Like in the previous sections, we will describe the dynamics

of bootstrap-based exploration after time ⌊ϵn⌋ for some arbitrarily small ϵ ∈ (0,1). At time ⌊ϵn⌋,

we assume that arm 1 has been played ⌊ϵn ·α⌋ times (and arm 2 the remainder), for any α∈ (0,1).

Then at a later time j+1, having collected history Gn
j as defined in (130), the probability of playing

the optimal arm 1 is

P
(
µ̂∗n
1 (j+1)> µ̂∗n

2 (j+1)
∣∣ Gn

j

)
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= P
(√

n (µ̂∗n
1 (j+1)− µ̂n

1 (j+1))+
Y n
1 (tj)σ

n
1

Rn
1 (tj)

+∆>

√
n (µ̂∗n

2 (j+1)− µ̂n
2 (j+1))+

Y n
2 (tj)σ

n
2

Rn
2 (tj)

∣∣∣∣ Gn
j

)
, (144)

where for arm k, using the data collected through time j, µ̂n
k(j +1) is the sample mean estimate

and µ̂∗n
k (j+1) is a bootstrapped sample mean estimate. Then, assuming the conditions B1-B2 are

satisfied for the family of distributions {Fµ : µ∈Θ}, Proposition 3 ensures that for each arm k, as

n→∞ (with j ≥ ϵn):

sup
x∈R

∣∣∣∣∣P (√n (µ̂∗n
k (j+1)− µ̂n

k(j+1))≤ x | Gn
j

)
−Φ

(
x
√
Rn

k(tj)

σn
k

)∣∣∣∣∣⇒ 0. (145)

Therefore, with probability converging to 1 as n → ∞, (144) is asymptotically equivalent to

p1(R
n, Y n), with p1 being exactly the probability function in (133). And the probability of playing

the sub-optimal arm 2 is asymptotically equivalent to p2(R
n, Y n) = 1−p1(R

n, Y n). Continuing the

derivation like we did in Section 2.1 leads to the following theorem, whose proof is very similar to

that of Theorem 1 and is thus omitted.

Theorem 8. Consider a two-armed bandit where each arm’s reward distribution comes from a

parametric model satisfying conditions B1-B2. The dynamics of bootstrap-based exploration, which

are described by the processes Rn = (Rn
1 ,R

n
2 ) and Y n = (Y n

1 , Y n
2 ) (defined in (128)-(129)), converge

weakly in D4[ϵ,1] as n→∞ to the processes R= (R1,R2) and Y = (Y1, Y2), which are unique strong

solutions of the SDE:

Rk(t) =Rk(ϵ)+

∫ t

ϵ

pk(R(s), Y (s))ds (146)

Yk(t) = Yk(ϵ)+

∫ t

ϵ

√
pk(R(s), Y (s))dBk(s), k= 1,2, (147)

R1(ϵ) = ϵα, R2(ϵ) = ϵ(1−α), (148)

Y1(ϵ) =B1(ϵα), Y2(ϵ) =B2(ϵ(1−α)), (149)

where the Bk are independent standard Brownian motions.

As in Section 2.2, we can also obtain similar corresponding stochastic ODE representations of the

SDEs (146)-(149).

6.4. Estimated Variances

In the bandit literature, it is almost always assumed that the variances (or variance proxies in

the sub-Gaussian case) of the arm distributions are known or a bound on them is known. In

particular, there have been few works on algorithmic modifications which allow arm variances to be
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estimated along with the means. The earliest work in this direction is that of Audibert et al. (2009),

who propose the UCB-V algorithm (where “V” stands for variance), which incorporates variance

estimation into its upper confidence bounds. UCB-V has been shown to significantly outperform

its alternatives, which assume equal variances, in settings such as when the suboptimal arms have

lower variance than the optimal arm. For Thompson sampling, Honda and Takemura (2014) showed

that it is possible to incorporate variance estimation within a Bayesian framework and still achieve

asymptotically optimal expected regret by using certain priors. And recently, Cowan et al. (2018)

showed that asymptotic optimality is achievable using variance-adaptive UCB algorithms. One can

see from these papers, novel work notwithstanding, that it can be technically complicated to bound

the expected regret when there is both mean and variance estimation involved.

Fortunately, from the weak convergence perspective, it is technically straightforward to accom-

modate variance estimation. For simplicity, we again focus on the two-armed case and assume that

the rewards for playing arms k= 1,2 are:

Xk(i)
iid∼N(µn

k , σ
2
k),

where as before, µn
1 −µn

2 =∆/
√
n, but now the variances σ2

k (which we assume to be constant for

all n) are also unknown. First, we define sample variances (recall tj = j/n):

Sn
k (tj) =

1

Rn
k(tj)n

j∑
i=1

(Ik(i)Xk(i)−mn
k(tj))

2
(150)

mn
k(tj) =

1

Rn
k(tj)n

j∑
i=1

Ik(i)Xk(i), (151)

and Sn
k can be made into a process on D[0,1] by piecewise constant interpolation. We use a simple

modification of Thompson sampling to incorporate variance estimation, which is essentially what

one would use when taking a fully Bayesian approach and defining a joint prior on (µn
k , σ

2
k) that

is proportional to (σ2
k)

−1−α for some α < 0. (See Honda and Takemura (2014) and Cowan et al.

(2018).)

As in Sections 2.1 and 6.1, to obtain an SDE approximation, it suffices to consider the two

processes Rn = (Rn
1 ,R

n
2 ) and Y n = (Y n

1 , Y n
2 ) defined in (128)-(129). Again, we describe the dynamics

of Thompson sampling after time ⌊ϵn⌋ for some arbitrarily small ϵ∈ (0,1). At time ⌊ϵn⌋, we assume

that arm 1 has been played ⌊ϵn ·α⌋ times (and arm 2 the remainder), for any α∈ (0,1). Then at a

later time j+1, having collected history Gn
j as defined in (130), for each arm k, we sample a value

from the posterior distribution:

µ̃n
k ∼N

(∑j

i=1 Ik(i)Xk(i)

Rn
k(tj)n

,
Sn
k (tj)

Rn
k(tj)n

)
. (152)
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Then, the probability of playing the optimal arm 1 is:

P
(
µ̃n
2 > µ̃n

1

∣∣ Gn
j

)
(153)

= P
(
N1

(
Y n
1 (tj)σ1

Rn
1 (tj)

+∆,
Sn
1 (tj)

Rn
1 (tj)

)
>N2

(
Y n
2 (tj)σ2

Rn
2 (tj)

,
Sn
2 (tj)

Rn
2 (tj)

) ∣∣∣∣ Gn
j

)
, (154)

where the Nk are independent normal random variables with their specified means and variances.

It is straightforward to see that Sn
k (t)

P→ σ2
k for any t ∈ [ϵ,1] as n→∞. So the weak limits of the

sample variance processes Sn
k are the constant D[ϵ,1] processes taking values σ2

k. Then, following

the rest of the derivation in Section 2.1, we end up with the SDE:

Rk(t) =Rk(ϵ)+

∫ t

ϵ

pvk(R(s), Y (s))ds (155)

Yk(t) = Yk(ϵ)+

∫ t

ϵ

√
pvk(R(s), Y (s))dBk(s), k= 1,2, (156)

R1(ϵ) = ϵα, R2(ϵ) = ϵ(1−α), (157)

Y1(ϵ) =B1(ϵα), Y2(ϵ) =B2(ϵ(1−α)), (158)

where the Bk are independent standard Brownian motions, and for any u= (u1, u2) ∈ [0,1]2 and

v= (v1, v2)∈R2,

pv1(u, v) =Φ

(
v1σ1u

−1
1 − v2σ2u

−1
2 +∆√

σ2
1u

−1
1 +σ2

2u
−1
2

)
(159)

pv2(u, v) = 1− pv1(u, v). (160)

As in Section 2.2, we can also obtain similar corresponding stochastic ODE representations of the

SDEs (155)-(158).

We make some further remarks. First, although we have been considering Thompson sampling

designed for normally-distributed rewards, the specifics of the reward distributions do not matter.

As long as the reward distributions have finite variances, we are guaranteed to end up with weak

convergence to Brownian limits by the functional central limit theorem in the martingale (leading

to our SDEs) or iid (leading to our stochastic ODEs) settings. (See Whitt (2007), Chapter 7 of

Ethier and Kurtz (1986) and Chapter 2 of Billingsley (1999)). Second, although both the arm means

and variances are assumed to be unknown in this section, we have seen that variance estimation is

basically a trivial task. This is in agreement with the intuition that the variances associated with

Brownian-like quantities can generally be assumed to be known exactly. In fact, the probability

measures associated with Brownian motions having different variances are mutually singular(!),

and statistical inference for diffusion processes always assumes from the outset that variances and

dispersion functions are known exactly (Kutoyants 2004). The non-trivial task in diffusion models

is to estimate drift, which is essentially the case here—the ∆ parameter (the
√
n-rescaled gap
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between arm means) appearing in all of our previous discussions plays the role of an unknown drift

parameter that must be learned by Thompson sampling. This discussion suggests that variance

estimation should generally be part of bandit algorithm design in such minimax settings. Indeed,

assuming the time horizon is long enough to allow small gaps between arm means to be estimated

with some degree of confidence, there will generally be enough data collected to accurately estimate

variances.

6.5. Batched Updates

In many settings it may be impractical to update a bandit algorithm after each time period.

Instead, updates are “batched” so that the algorithm commits to playing some arm (adaptively

determined) for an interval of time (also possibly adaptively determined), and then the algorithm

is updated all at once with the data collected during the interval. For a time horizon of n, suppose

we perform batched Thompson sampling by committing to play an arm for o(n) time periods, and

then updating all at once before making a new commitment for the next o(n) periods. Assuming

the gap sizes are of magnitude 1/
√
n, as n→∞, we would obtain weak convergence to the same

diffusion limit processes (SDEs and stochastic ODEs) as in the case of ordinary (non-batched)

Thompson sampling. Indeed, a time interval of o(n) in the discrete pre-limit system corresponds

to (after dividing by n) an infinitesimally small time interval in the continuous limit system. This

suggests that as long as the number of batches increases to infinity (possibly at an arbitrarily slow

rate) as n→∞, and each batch is not too large (at most o(n) periods), then the distribution of

regret will be approximately the same compared to the case in which one updates in every period

(batch sizes of one). To make this precise, we have the following proposition, whose straightforward

proof is omitted.

Proposition 1. For the K-armed MAB or linear bandit (with non-random covariate vectors), let

Rn = (Rn
k : 1≤ k ≤K) and Y n = (Y n

k : 1≤ k ≤K) denote the dynamics of Thompson sampling, as

in (11)-(13) from the derivation of the SDE approximation in Section 2.1. Let R̄n = (R̄n
k : 1≤ k≤

K) and Ȳ n = (Ȳ n
k : 1 ≤ k ≤ K) denote the same resulting quantities (with the same arm reward

sequences) when Thompson sampling is implemented with o(n) batched updates. Then the processes

Rn and R̄n, as well as Y n and Ȳ n, have the same weak limits as n→∞. An analogous result holds

for Thompson sampling with o(n) batched updates under the stochastic ODE approximation derived

in Section 2.2.

The discussion and proposition above correspond nicely to results in the literature regarding opti-

mal batching for bandits in the minimax gap regime from the perspective of expected regret. As

shown in Cesa-Bianchi et al. (2013), Perchet et al. (2016) and Gao et al. (2019), in the minimax
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regime, a relatively tiny, O(log log(n)), number of batches is necessary and sufficient (sufficient for

specially designed algorithms) to achieve the optimal order of expected regret. It should be an

interesting future direction to study general batched bandit algorithms designed for the minimax

regime from the perspective of weak convergence/diffusion approximation.

Appendix A: Normal Approximations for Posteriors and the Bootstrap

We consider a general one-dimensional parametric family {Fθ : θ ∈Θ}, where Θ is a small interval.

Our version of the Bernstein-von Mises theorem in Proposition 2 is a locally-uniform almost sure

version, in the sense that almost sure convergence to normality of the posterior distribution holds

uniformly for all parameter values θ ∈Θ. In order for almost sure convergence simultaneously for

different parameter values θ to make sense, we consider an independent sequence of uniform (0,1)

random variables Ui, i≥ 1, and we obtain sequences of observations for different θ by considering

Qθ(Ui), i≥ 1, where Qθ is the quantile function corresponding to CDF Fθ. Hence, the Qθ(Ui) are

iid observations from Fθ. For a sequence of parameter values θn, we use F n and Qn to denote the

corresponding CDF’s and quantile functions.

We assume the following conditions BvM.1-BvM.4 hold. We use l(θ,x) to denote the log-

likelihood function (observed values are plugged into the x argument), and l(m)(θ,x) denotes the

mth derivative with respect to θ. We use I(θ) to denote the Fisher information (of a single obser-

vation) evaluated at θ. Expectations taken with respect to Fθ are written using Eθ[·].
(BvM.1) The set {x : l(θ,x) > 0} is the same for all θ ∈ Θ. For each x, l(θ,x) is three-times

differentiable with respect to θ. Both l(θ,x) and l(2)(θ,x) are jointly continuous with respect to θ

and x.

(BvM.2) At each θ ∈Θ, differentiation and integration can be interchanged so that:

Eθ
[
l(1)(θ,X)

]
= 0 (161)

Eθ
[
l(2)(θ,X)

]
=−Eθ

[
l(1)(θ,X)2

]
. (162)

(BvM.3) For each δ > 0, there is an ϵ > 0 such that for all θ ∈Θ,

sup
θ′:|θ−θ′|≥δ

Eθ[l(θ′,X)]≤Eθ[l(θ,X)]− ϵ. (163)

Also, infθ∈Θ I(θ)> 0.

(BvM.4) There is a function η1 and a continuous function η2 such that for all x:

η1(x)≥ sup
θ∈Θ

|l(θ,x)| ∨
∣∣l(2)(θ,x)∣∣ (164)

η2(x)≥ sup
θ∈Θ

∣∣l(3)(θ,x)∣∣ (165)∫ 1

0

sup
θ∈Θ

ηi(Qθ(u))du<∞, i= 1,2. (166)
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Proposition 2. Suppose conditions BvM.1-BvM.4 hold for some small interval Θ. Consider a

sequence of parameter values θn → θ0 for some (fixed deterministic) θ0 ∈ Θ as n → ∞. Use

a (fixed, non-changing with n) prior π0 with continuous positive density in a neighborhood of

θ0. For a single sequence Ui, i ≥ 1, of independent uniform (0,1) random variables, for each

n, we condition on the observations Qn(U1), . . . ,Q
n(Un) to obtain the posterior distribution θ̃n |

Qn(U1), . . . ,Q
n(Un) for θ

n. Let θ̂n denote the maximum likelihood estimator (MLE) of θn using the

observations Qn(U1), . . . ,Q
n(Un). Then, almost surely, the centered and scaled posterior density

πn(t |Qn(U1), . . . ,Q
n(Un)), for

√
n(θ̃n − θ̂n), satisfies:

lim
n→∞

∫
R

∣∣∣∣∣πn(t |Qn(U1), . . . ,Q
n(Un))−

√
I(θn)
2π

exp

(
−1

2
t2I(θn)

)∣∣∣∣∣dt= 0. (167)

Proof of Proposition 2. The proof here is adapted from Theorem 4.2 on page 104 of Ghosh

et al. (2006). All of the statements to follow are almost sure statements, so generally we will not

repeatedly state so. To begin, note that the posterior density can be written as

πn(t |Qn(U1), . . . ,Q
n(Un)) = (Cn)−1π0(θ̂n + t/

√
n) exp

(
Ln(θ̂

n + t/
√
n)−Ln(θ̂

n)
)
, (168)

with normalization factor (Cn)−1 and

Ln(y) =
n∑

i=1

l(y,Qn(Ui)).

Let

Dn(t) = π0(θ̂n + t/
√
n) exp

(
Ln(θ̂

n + t/
√
n)−Ln(θ̂

n)
)
−π0(θn) exp

(
−1

2
t2I(θn)

)
. (169)

To show (167), it suffices to show that

lim
n→∞

∫
R
|Dn(t)|dt= 0. (170)

If (170) holds, then

lim
n→∞

(
Cn −π0(θn)

√
2π/I(θn)

)
= 0.

So we would have∫
R

∣∣∣∣πn(t |Qn(U1), . . . ,Q
n(Un))−

√
I(θn)/2π exp

(
−1

2
t2I(θn)

)∣∣∣∣dt
≤ (Cn)−1

∫
R
|Dn(t)|dt+

∣∣∣(Cn)−1π0(θn)−
√

I(θn)/2π
∣∣∣ ∫

R
exp

(
−1

2
t2I(θn)

)
dt,

and the proof of Proposition 2 would be complete.
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To show (170), we consider two cases: An = {t : |t|>γ
√
n} and (An)c = {t : |t| ≤ γ

√
n}, where we

will set γ > 0 later. For the first case involving the set An, note that∫
An

|Dn(t)|dt≤
∫
An

π0(θ̂n + t/
√
n) exp

(
Ln(θ̂

n + t/
√
n)−Ln(θ̂

n)
)
dt

+

∫
An

π0(θn) exp

(
−1

2
t2I(θn)

)
dt. (171)

Since θn → θ0 as n→∞, it is straightforward to verify that the second integral in (171) goes to zero

as n→∞. As for the first integral, note from Lemma 5 that we have (locally-uniform) almost sure

consistency of the MLE: θ̂n − θn → 0 as n→∞. Using this nice property, we are able to establish

in Lemma 6 that there exists ϵ > 0 such that almost surely, for sufficiently large n,

1

n

(
Ln(θ̂

n + t/
√
n)−Ln(θ̂

n)
)
≤−ϵ

on the set An. Therefore, the first integral in (171) also goes to zero as n→∞.

For the second case involving the set (An)c, we expand Ln in a Taylor series about the MLE θ̂n,

noting that by the definition of the MLE, L(1)
n (θ̂n) = 0, where L(m)

n (y) is the mth derivative of Ln

with respect to the argument y. For large n, we have

Ln(θ̂
n + t/

√
n)−Ln(θ̂

n) =−1

2
t2În(θ̂n)+ rn(t), (172)

where

În(θ̂n) =− 1

n
L(2)

n (θ̂n)

and

rn(t) =
1

6

(
t√
n

)3

L(3)
n (θnt ),

where θnt lies between θ̂n and θ̂n + t/
√
n. Using condition BvM.4 and Lemma 8, for sufficiently

large n,

|rn(t)| ≤ 1

6

t3√
n

1

n

n∑
i=1

η2(Q
n(Ui))≤

1

3

t3√
n
E
[
sup
θ∈Θ

η2(Qθ(U1))

]
, (173)

and so for fixed t, we have rn(t)→ 0 as n→∞. On the set (An)c, we have t/
√
n≤ γ, and so (173)

can be re-written as

|rn(t)| ≤ 1

3
γt2E

[
sup
θ∈Θ

η2(Qθ(U1))

]
. (174)

Taking γ > 0 to be sufficiently small, and using Lemma 7, along with the fact that infθ∈Θ I(θ)> 0

from BvM.3, we have from (172) that on the set (An)c,

exp
(
Ln(θ̂

n + t/
√
n)−Ln(θ̂

n)
)
≤ exp(−at2) (175)
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for some fixed a > 0 and sufficient large n. Thus, using condition BvM.1 and Lemma 5, Dn(t) is

dominated by an integrable function on the set (An)c for sufficiently large n. Using (173), rn(t)→ 0

for fixed t as n→∞, so together with Lemma 7, we have Dn(t)→ 0 for fixed t as n→∞. The

dominated convergence theorem then yields∫
(An)c

|Dn(t)|dt→ 0

as n→∞, thereby concluding the proof. □

Lemmas 5-8 below verify certain technical details in the proof of Proposition 2.

Lemma 5. Almost surely, θ̂n − θn → 0 as n→∞.

Proof of Lemma 5. Using condition BvM.1, for any θ ∈Θ and x, l(θ′, x)→ l(θ,x) as θ′ → θ, so

(by Scheffé’s Lemma) Fθ′ ⇒ Fθ as θ′ → θ. Therefore, Qθ′(u)→ Qθ(u) for all points of continuity

u ∈ (0,1) of Qθ. (See, for instance, Proposition 3.1 on page 112 of Shorack (2000).) Note that for

each θ′ ∈Θ, Qθ′ can be discontinuous at only countably many points (as a non-decreasing function),

and l(θ,x) is jointly continuous in θ and x by condition BvM.1. Also, there is a function η1 for which

supθ′∈Θ η1(Qθ′(u)) is integrable and dominates l(θ,Qθ′(u)) for all θ, θ′ ∈ Θ by BvM.4. Therefore,

the class of functions {u 7→ l(θ,Qθ′(u)) : θ, θ
′ ∈Θ} has finite L1-bracketing numbers (see Example

19.8 on page 272 of van der Vaart (1998)), and so it is a Glivenko-Cantelli class of functions:

sup
θ,θ′∈Θ

∣∣∣∣∣ 1n
n∑

i=1

l(θ,Qθ′(Ui))−
∫ 1

0

l(θ,Qθ′(u))du

∣∣∣∣∣→ 0 (176)

almost surely as n→∞. And we also have

1

n

n∑
i=1

l(θn,Qn(Ui))−
∫ 1

0

l(θn,Qn(u))du→ 0 (177)

almost surely as n→∞.

By the definition of the MLE θ̂n,

1

n

n∑
i=1

l(θ̂n,Qn(Ui)) = sup
θ∈Θ

1

n

n∑
i=1

l(θ,Qn(Ui))

≥ 1

n

n∑
i=1

l(θn,Qn(Ui)).

Thus, using (177),

1

n

n∑
i=1

l(θ̂n,Qn(Ui))≥
∫ 1

0

l(θn,Qn(u))du+ a(n),
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for some sequence a(n)→ 0 almost surely as n→∞. We can then write

0≤
∫ 1

0

l(θn,Qn(u))du−
∫ 1

0

l(θ̂n,Qn(u))du

≤ 1

n

n∑
i=1

l(θ̂n,Qn(Ui))−
∫ 1

0

l(θ̂n,Qn(u))du− a(n)

≤ sup
θ,θ′∈Θ

∣∣∣∣∣ 1n
n∑

i=1

l(θ,Qθ′(Ui))−
∫ 1

0

l(θ,Qθ′(u))du

∣∣∣∣∣− a(n)

→ 0

almost surely as n→∞ by (176). Finally, applying condition BvM.3, we must have θ̂n − θn → 0

almost surely as n→∞. □

Lemma 6. For any γ > 0, there exists ϵ > 0 such that almost surely, for sufficiently large n,

1

n

(
Ln(θ̂

n + t/
√
n)−Ln(θ̂

n)
)
≤−ϵ

on the set An = {t : |t|>γ
√
n}.

Proof of Lemma 6. Note that

1

n

(
Ln(θ̂

n + t/
√
n)−Ln(θ̂

n)
)
=

1

n

n∑
i=1

l(θ̂n + t/
√
n,Qn(Ui))−

1

n

n∑
i=1

l(θ̂n,Qn(Ui)).

So using (176) from the proof of Lemma 5, we then have

1

n

(
Ln(θ̂

n + t/
√
n)−Ln(θ̂

n)
)

≤
∫ 1

0

l(θ̂n + t/
√
n,Qn(u))du−

∫ 1

0

l(θ̂n,Qn(u))du+ a(n) (178)

for some sequence a(n)→ 0 almost surely as n→∞. Recall that θn → θ0 as n→∞, θ̂n − θn → 0

almost surely as n → ∞, and l(θ,Qθ′(u)) is jointly continuous in θ and θ′ for all but at most

countably many u ∈ (0,1) by condition BvM.1. Therefore, condition BvM.4 and the dominated

convergence theorem yield ∫ 1

0

l(θ̂n,Qn(u))du−
∫ 1

0

l(θn,Qn(u))du→ 0 (179)

almost surely as n→∞. For sufficiently large n, on the set An, we have
∣∣∣θ̂n + t/

√
n− θn

∣∣∣≥ γ/2.

The desired conclusion then follows from condition BvM.3, (178) and (179). □

Lemma 7. Almost surely, În(θ̂n)−I(θn)→ 0 as n→∞.
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Proof of Lemma 7. Note that

În(θ̂n)−I(θ̂n)

=− 1

n

n∑
i=1

l(2)(θ̂n,Qn(Ui))+

∫ 1

0

l(2)(θ̂n,Qn(u))du.

Using condition BvM.1, we have for any θ ∈ Θ that Qθ′(u) → Qθ(u) for all points of continuity

u∈ (0,1) of Qθ as θ
′ → θ. (See, for instance, Proposition 3.1 on page 112 of Shorack (2000).) Since at

each θ ∈Θ, u 7→Qθ(u) can be discontinuous at only countably many u∈ (0,1) (as a non-decreasing

function), and l(2)(θ,x) is jointly continuous in θ and x by BvM.1, at each θ, θ′ ∈Θ, l(θ,Qθ′(u)) is

jointly continuous in θ and θ′ for all but at most countably many u∈ (0,1). By BvM.4, there exists

an integrable function which dominates l(θ,Qθ′(u)) for all θ and θ′, and so the class of functions

{u 7→ l(θ,Qθ′(u)) : θ, θ
′ ∈ Θ} has finite L1-bracketing numbers (see Example 19.8 on page 272 of

van der Vaart (1998)). Therefore, it is a Glivenko-Cantelli class of functions:

sup
θ,θ′∈Θ

∣∣∣∣∣ 1n
n∑

i=1

l(2)(θ,Qθ′(Ui))−
∫ 1

0

l(2)(θ,Qθ′(u))du

∣∣∣∣∣→ 0

almost surely as n→∞. Lastly, I(θ̂n)−I(θn)→ 0 almost surely as n→∞ by Lemma 5, BvM.1

and BvM.4, and the dominated convergence theorem, thereby completing the proof. □

Lemma 8. Almost surely,

1

n

n∑
i=1

η2(Q
n(Ui))−E[η2(Qn(U1))]→ 0

as n→∞.

The proof follows very similarly to the proof of Lemma 7 and is thus omitted.

In Proposition 3 below, we develop a normal approximation for bootstrapping the mean, similar

in spirit to the normal approximation for posterior distributions in Proposition 2. Like before,

for almost sure convergence to make sense in this setting, we consider a sequence of independent

uniform (0,1) random variables Ui, i≥ 1, and we obtain sequences of observations for different θ

by considering Qθ(Ui), i≥ 1 (which are thus iid from Fθ). We assume the following conditions.

(Boot.1) For each θ ∈Θ, Fθ′ ⇒ Fθ as θ′ → θ.

(Boot.2) There exists function η3 such that η3(u) ≥ supθ∈ΘQθ(u)
2 for all u ∈ (0,1) and∫ 1

0
η3(u)du<∞.

Proposition 3. Suppose conditions Boot.1-Boot.2 hold for some small interval Θ. Consider a

sequence of parameter values θn → θ0 for some (fixed deterministic) θ0 ∈Θ as n→∞. For a single
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sequence Ui, i≥ 1, of independent uniform (0,1) random variables, for each n, let µ̂n denote the

sample mean (for estimating the mean of F n) using the observations Qn(U1), . . . ,Q
n(Un). Let µ̂

∗n

denote the bootstrapped sample mean. Then, almost surely,

lim
n→∞

sup
x∈R

∣∣∣∣P (√n (µ̂∗n − µ̂n)≤ x |Qn(U1), . . . ,Q
n(Un)

)
−Φ

(
x

σ0

)∣∣∣∣= 0, (180)

where σ2
0 is the variance of Fθ0.

Proof of Proposition 3. We check conditions to be able to apply Proposition 1.3.1 on page 11

of Politis et al. (1999).

First of all, with F̂ n(x) = 1
n

∑n

i=1 I(Qn(Ui)≤ x), we have

sup
x∈R

∣∣∣F̂ n(x)−F n(x)
∣∣∣= sup

x∈R

∣∣∣∣∣ 1n
n∑

i=1

I(Ui ≤ F n(x))−F n(x)

∣∣∣∣∣
≤ sup

y∈(0,1)

∣∣∣∣∣ 1n
n∑

i=1

I(Ui ≤ y)− y

∣∣∣∣∣
→ 0

almost surely as n→∞ by the classical Glivenko-Cantelli Theorem.

Using condition Boot.1, we have for any θ ∈Θ that Qθ′(u)→Qθ(u) for all points of continuity

u ∈ (0,1) of Qθ. (See, for instance, Proposition 3.1 on page 112 of Shorack (2000).) Since at each

θ, Qθ can be discontinuous at only countably many points (as a non-decreasing function), and by

condition Boot.2, there exists an integrable function η3 which dominates Q2
θ for all θ ∈Θ, the class

of functions {u 7→Qθ(u)
2 : θ ∈Θ} has finite L1-bracketing numbers (see Example 19.8 on page 272

of van der Vaart (1998)). Therefore, it is a Glivenko-Cantelli class of functions:

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

Qθ(Ui)
2 −E[Qθ(U1)

2]

∣∣∣∣∣→ 0

almost surely as n→∞. By a similar argument, we also have

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

Qθ(Ui)−E[Qθ(U1)]

∣∣∣∣∣→ 0

almost surely as n→∞.

Using conditions Boot.1-Boot.2 and the dominated convergence theorem, we have as n→∞:∫
x2dF n(x) =E[Qn(U1)

2]→E[Qθ0(U1)
2] =

∫
x2dFθ0(x)∫

xdF n(x) =E[Qn(U1)]→E[Qθ0(U1)] =

∫
xdFθ0(x).

Thus, the conditions of Proposition 1.3.1 on page 11 of Politis et al. (1999) are verified. □
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Appendix B: Weak Convergence Technical Lemmas

For the convenience of the reader, here we collect some results from the literature about processes

in Dd[0,1], equipped with the Skorohod metric.

Lemma 9 (Tightness of Multi-dimensional Processes). A sequence of process ξn =

(ξn1 , . . . , ξ
n
d ) is tight in Dd[0,1] if and only if each ξnj and each ξnj + ξnk are tight in D[0,1], for all

1≤ j, k≤ d. (See Problem 22 of Chapter 3 on page 153 of Ethier and Kurtz (1986).)

Lemma 10 (Simple Sufficient Conditions for Tightness). A sequence of processes ξn in

D[0,1] adapted to filtrations Fn
t is tight if

lim
a→∞

sup
n

P
(

sup
0≤t≤1

|ξn(t)|>a

)
= 0, (T1)

and for any δ > 0, there exists a collection of non-negative random variables αn(δ) such that

E
[
(ξn(t+u)− ξn(t))

2 | Fn
t

]
≤E [αn(δ) | Fn

t ] (T2)

almost surely for 0≤ t≤ 1 and 0≤ u≤ δ ∧ (1− t), and

lim
δ↓0

limsup
n→∞

E [αn(δ)] = 0. (T3)

(See Lemma 3.11 from Whitt (2007), which is adapted from Ethier and Kurtz (1986).)

Lemma 11 (Martingale Functional Central Limit Theorem). Let ξn = (ξn1 , . . . , ξ
n
d ) be a

sequence of martingales in Dd[0,1] (equipped with the Skorohod metric), adapted to filtrations Fn
t

and satisfying the conditions:

lim
n→∞

E
[
sup
0≤t≤1

∣∣ξnj (t)− ξnj (t−)
∣∣]= 0, j = 1, . . . , d, (M1)

and suppose there exists a symmetric positive-definite matrix C ∈Rd×d with components Cj,k such

that the cross-variation processes satisfy

⟨ξnj , ξnk ⟩t
P→Cj,kt. (M2)

Then the joint process ξn converges weakly to a Brownian motion on Rd with covariance structure C

(and zero drift). (See Theorem 2.1 of Whitt (2007), which is adapted from Theorem 1.4 of Chapter

7 on page 339 of Ethier and Kurtz (1986).)
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