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We study the behavior of Thompson sampling in the “small gap” regime from the perspective of weak

convergence. The small gap regime is one in which the gaps between the arm means are of order
√
γ, where

γ is small. When
√
γ is small and the number of arm plays n is large and of order 1/γ or smaller, we show

that the process-level dynamics of Thompson sampling can be approximated by solutions to appropriately

defined stochastic differential equations (SDEs) and stochastic ordinary differential equations (ODEs). Our

weak convergence theory is developed from first principles using the Continuous Mapping Theorem, and

can be easily adapted to analyze other sampling-based bandit algorithms. In this regime, we also show that

the weak limits of the dynamics of many sampling-based bandit algorithms—including Thompson sampling

designed for single-parameter exponential family rewards, and non-parametric bandit algorithms based on

bootstrap re-sampling—coincide with those of Gaussian parametric Thompson sampling with Gaussian

priors. Moreover, in this regime, these algorithms are generally robust to model mis-specification.
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1. Introduction

The multi-armed bandit problem is a widely studied model that is both useful in practical appli-

cations and is a valuable theoretical paradigm exhibiting the trade-off between exploration and

exploitation in sequential decision-making under uncertainty. Theoretical research in this area has

focused overwhelmingly on studying the performance of algorithms through establishing upper and

lower bounds on the expected (pseudo-)regret; see Lattimore and Szepesvári (2020) for a recent

detailed account of bandit theory. The regret Reg(n) :=
∑

kNk(n)∆k is the sum over each arm k of

the number of times Nk(n) it is played over horizon n, weighted by its mean reward sub-optimality

gap ∆k := maxj µj − µk, where µj is the mean reward of arm j. While expected regret E[Reg(n)]
is the most fundamental performance measure, the probabilistic behavior of Reg(n) can depend

on other aspects of its distribution, which may be crucial to understand in some applications. For

example, in settings where bandit algorithms are deployed with only a limited number of runs so

that the law of large numbers does not “kick in”, or in settings where risk sensitivity is a key

concern, the spread or variance of Reg(n) can be as important for designing effective algorithms

as E[Reg(n)].
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In this paper, we focus on Thompson sampling (TS) (Thompson 1933), which is a Bayesian

approach for balancing exploration and exploitation that has recently become one of the most

popular bandit algorithms (Chapelle and Li 2011, Agrawal and Goyal 2012, Kaufmann et al. 2012,

Russo and Van Roy 2014, 2016, Russo et al. 2019). The TS principle specifies that at any given

time, an arm is played with probability equal to the posterior probability that its mean reward

is the highest among all arms; a precise description of TS is provided in Section 2. Our specific

interest is in studying the algorithm’s behavior in the challenging “small gap” environment in which

the sub-optimality gaps ∆k are of order
√
γ, with γ ↓ 0, and in which the total number n of arm

plays is large and of order 1/γ (or smaller). Thus, this analysis provides insight into the algorithm’s

behavior when the number of arm plays n is not yet large enough to have confidently identified

the optimal arm. Sending γ ↓ 0, we show that the dynamics of TS, viewed as a stochastic process,

converges weakly (in distribution) to a diffusion process characterized by a stochastic differential

equation (SDE).

This asymptotic regime, which we will refer to as “diffusion scaling”, corresponds to so-called

minimax or worst-case settings in the bandit literature, and is one of the two key settings which

guide the design of optimal bandit algorithms; see Chapters 15-16 of Lattimore and Szepesvári

(2020). Indeed, for TS, which is known to be nearly minimax-optimal, the “statistically hardest”

bandit environments have sub-optimality gaps ∆k scaling as 1/
√
n for time horizon n (Agrawal and

Goyal 2013, 2017). In such settings, there is not enough reward information for bandit algorithms

to fully distinguish between sub-optimal and optimal arms, and so essentially all arms are played

OP(n) times over a horizon of n, resulting in OP(
√
n) regret. Moreover, as mentioned above, the

analysis of such settings provides insight about the early stages of bandit experiments in general,

when algorithms are just starting to be able to distinguish between arms.

Our main contributions in this paper are described in the two points below. In independent work,

Kuang and Wager (2023) derived similar SDE and stochastic ODE characterizations for versions of

TS based on posterior updating with Gaussian priors and likelihoods within a general framework for

analyzing sampling-based bandit algorithms under diffusion scaling. However, directly compared

to our two main contributions, 1) their weak convergence theory invokes rather abstract theory

based on infinitesimal generators and 2) they do not develop the general invariance principles and

accompanying insights that we do. We provide a more detailed comparison of our work to theirs

in Section 1.1.

1) Under diffusion scaling, we develop distributional approximations for the process-level dynam-

ics of the Gaussian Thompson sampler, which is the TS principle implemented using the posterior

updating mechanics of Gaussian priors and likelihoods. The limit dynamics of the Gaussian Thomp-

son sampler have an SDE representation and also an equivalent stochastic ordinary differential
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equation (ODE) representation; see Theorems 1, 2 and 3. These diffusion approximations only

require that the centered and suitably re-scaled reward processes converge weakly to Brownian

motion, and do not require the rewards themselves to be Gaussian (or even necessarily iid). Cru-

cially, our proof approach for these theorems is transparent and explicitly shows how the SDE and

stochastic ODE weak limits arise. Specifically, we start with discrete-time equations describing

the evolution of the Gaussian Thompson sampler, and then pass to the limit using the Continu-

ous Mapping Theorem and elementary arguments to obtain the SDEs and stochastic ODEs. We

provide intuitive sketches of our proof approach in Sections 3.1-3.2.

2) We also develop diffusion approximations for other versions of TS and related sampling-based

bandit algorithms. Notably, we develop such approximations for exponential family (EF) Thompson

samplers, which is the TS principle implemented using the posterior updating mechanics of any

prior distribution (satisfying modest regularity conditions) and any single-parameter exponential

family likelihood. We further develop such approximations for the bootstrap sampler, which is

similar to the TS principle, but involves (non-parametric) bootstrap re-sampling instead of posterior

sampling. Under diffusion scaling, our theory indicates that all of these algorithms satisfy an

invariance principle—namely, in the limit, their sampling behaviors and thus also their SDEs and

stochastic ODEs all coincide with that of the Gaussian Thompson sampler. Thus, in minimax or

worst-case settings, this positions the Gaussian Thompson sampler as the central/canonical bandit

algorithm among the many versions of TS and related sampling-based bandit algorithms studied

in the literature. Additionally, under diffusion scaling, the regret performance of these algorithms

is insensitive to mis-specification of reward distributions, as shown in Proposition 3. This contrasts

with the instance-dependent bandit setting of Lai and Robbins (1985), where algorithms can be

highly sensitive to model mis-specification, as recently shown in Fan and Glynn (2024).

The rest of the paper is structured as follows. Related work is further discussed in Section 1.1.

We then describe the model and setup used throughout the paper in Section 2. In Section 3.1, we

provide an intuitive derivation leading to the SDE convergence result for the Gaussian Thompson

sampler in Theorem 1 (with the proof given in Section 5.1). Similarly, in Section 3.2, we provide

an intuitive derivation leading to the stochastic ODE convergence result for Gaussian Thompson

sampler in Theorem 2 (with the proof given in Section 5.2). We provide extensions (Corollary 1

and Theorem 3) of diffusion approximations in Section 3.3. In Section 4.1, we show that the EF

Thompson sampler has the same weak limit under diffusion scaling as the Gaussian Thompson

sampler. The same is shown for the bootstrap sampler in Section 4.2. In Section 4.3, under diffusion

scaling, we discuss the insensitivity of these sampling-based bandit algorithms to mis-specification

of the reward distribution. We then conclude the paper with a quick study of batched updating

in Section 4.4. Additional proofs and technical results can be found in Appendices A, B, C and D.
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1.1. Related Work

In the process of completing our paper, we became aware of the independent work of Kuang and

Wager (2023) (abbreviated KW in the discussion below), which was posted online prior to our

manuscript. As mentioned in the Introduction, the overlap between our work and theirs is that

both obtain similar SDE and stochastic ODE approximations for the dynamics of the Gaussian

Thompson sampler under diffusion scaling with
√
γ-scale sub-optimality gaps over time horizons

of O(1/γ); see our Theorems 1 and 2, and KW’s Theorems 1 and 3 (applied to the Gaussian

Thompson sampler).

However, the theoretical approach taken in our paper to establish these results differs from

that of KW in the following way. KW represent sampling-based algorithms, including TS, as

Markov chains, and use the martingale framework of Stroock and Varadhan (Stroock and Varadhan

1979) to establish weak convergence of the Markov chains to diffusion processes by showing the

convergence of the corresponding infinitesimal generators. On the other hand, as discussed in the

Introduction, we use direct representations in terms of discrete versions of SDEs and stochastic

ODEs, and we show from first principles using the Continuous Mapping Theorem that the discrete

systems converge weakly to their continuous counterparts. Our approach has the advantage that it

offers a transparent and intuitive view of how the diffusion approximations arise. Furthermore, our

approach can be used to obtain diffusion approximations for sampling-based algorithms belonging

to the Sequentially Randomized Markov Experiment Framework of KW.

Also related to our work, Kalvit and Zeevi (2021) has recently studied the behavior of the UCB1

algorithm of Auer et al. (2002) in worst-case gap regimes. When the gaps between arm means scale

as
√

log(n)/n with the horizon n, they obtain diffusion approximations for UCB1. Additionally,

they provide distinctions between the behavior of TS and UCB algorithms when the sub-optimality

gap sizes are effectively zero relative to the length of the horizon n.

2. Model and Preliminaries

Bandit Problems and Thompson Sampling

A general sampling-based bandit algorithm operates as follows. We have a filtration H= (Hj, j ≥

0) that the bandit process is adapted to, with

Hj = σ(I(1), Y (1), . . . , I(j), Y (j)) (1)

corresponding to the data collected through some time j, where at each time i and for each arm

k ∈ [K] := {1, . . . ,K}, Ik(i) = 1 if arm k is selected and otherwise Ik(i) = 0 (so that
∑

k Ik(i) = 1),

and Y (i) is the reward received for the selected arm. For the settings in this paper, the data
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can be summarized by sufficient statistics (N(j),G(j)) = ((Nk(j),Gk(j)), k ∈ [K]) measurable with

respect to Hj, where for each arm k ∈ [K],

Nk(j) =

j∑
i=1

Ik(i) (2)

is the number of plays and

Gk(j) =

j∑
i=1

Ik(i)Y (i) (3)

is the cumulative reward.

The algorithm selects an arm in the time period j+1 by generating I(j+1) as an independent

K-dimensional multinomial random variable with a single trial and success probability vector

π(N(j),G(j))∈∆K , where ∆K denotes the K-dimensional probability simplex and π :NK ×RK →

∆K . Given I(j+1), a reward Y (j+1) is received for the selected arm, and the sufficient statistics

(N(j+1),G(j+1)) are updated accordingly.

TS is an important example of a sampling-based bandit algorithm and our primary focus through-

out the paper. When studying TS, we will restrict attention to TS designed for parametric reward

models parameterized by mean. (As mentioned in the Introduction, we will begin with the Gaus-

sian Thompson sampler in Sections 3.1 and 3.2 before generalizing to EF Thompson samplers in

Section 4.1.) As a Bayesian algorithm, TS maintains a posterior distribution for the mean reward

of each arm, and in each time period, it samples a mean from each posterior and plays the arm

corresponding to the highest sampled mean, after which a corresponding reward is received and

the posterior is updated with the new information. More precisely, for each arm k, we start with

an independent prior distribution ν0
k for the unknown mean µk. From posterior updating, at each

time j = 1,2, . . . and for each arm k, we have a posterior distribution νk(Nk(j),Gk(j)), which

depends on the sufficient statistics (Nk(j),Gk(j)) for that arm. At time j, we draw an indepen-

dent sample µ̃k(j) ∼ νk(Nk(j),Gk(j)) for each arm k, and we play the arm argmaxk µ̃k(j). So,

for TS, πk(N(j),G(j)) := P(k= argmaxl µ̃l(j)), i.e., each arm is played according to the posterior

probability that it has the highest mean reward.

Reward Feedback Mechanisms

We consider two distributionally equivalent ways of generating reward feedback. For each arm

k ∈ [K], let Qk be the reward distribution, and on a common probability space, let Xk(i)
iid∼Qk for

i= 1,2, . . . . We refer to the first way as the random table model, where at time j, Y (j) =Xk(j) for

the selected arm k ∈ [K] (Ik(j) = 1). We refer to the second way as the reward stack model, where

at time j, Y (j) =Xk(Nk(j − 1) + 1) for the selected arm k ∈ [K] (Ik(j) = 1), where Nk(j − 1) is
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the number of plays of arm k through time j− 1, as defined in (2) above. (The random table and

reward stack terminology is taken from Lattimore and Szepesvári (2020); see Chapter 4.6, page

53.) In Section 3.1, we will see how the random table model leads to an SDE characterization of

TS dynamics. In Section 3.2, we will see how the reward stack model leads to a stochastic ODE

characterization.

Diffusion Scaling Asymptotic Regime

As mentioned in the Introduction, throughout the paper, we consider a sequence of bandit

models indexed by a positive, real-valued parameter γ, with γ ↓ 0. We will consider bandit instances

with arm mean separation on the scale of
√
γ, over time horizons on the scale of 1/γ. When

working within the corresponding γ-scale system, we will write a γ superscript on all objects defined

previously to indicate we are working with the same object defined appropriately in the γ-scale

system.

For each γ and each arm k ∈ [K], we have a reward distribution Qγ
k, with rewards Xγ

k (i)
iid∼

Qγ
k for i = 1,2, . . . . Regardless of the reward feedback mechanism (with reward Y γ(j) at time j

given according to the random table model or the reward stack model introduced previously), the

algorithm’s information is captured by the filtration Hγ = (Hγ
j , j ≥ 0), with

Hγ
j = σ(Iγ(1), Y γ(1), . . . , Iγ(j), Y γ(j)). (4)

The diffusion scaling asymptotic regime is defined in Assumption 1 below.

Assumption 1 (Diffusion Scaling). For the distributions Qγ
k, with means µγ

k and variances (σγ
k)

2,

the following hold. There exist some α > 0, some µ∗ ∈R, and for each arm k, some fixed dk ∈R,
σk > 0 such that

µγ
k = µ∗ +

√
γdγk, lim

γ↓0
dγk = dk (5)

lim
γ↓0

σγ
k = σk (6)

sup
γ>0

E
[
|Xγ

k (i)|
2+α
]
<∞. (7)

In the diffusion scaling setting of Assumption 1, for each arm k, we will use the notation ∆γ
k :=

maxl d
γ
l − dγk. As γ ↓ 0, ∆γ

k →∆k := maxl dl − dk. The essential idea behind the diffusion scaling is

that the arm means µγ
k are all clustered near some fixed µ∗ ∈R, with small differences/gaps between

the means on the scale of
√
γ. In order to begin distinguishing between arms, one must play each

arm on the scale of 1/γ times, so that the standard errors for estimating the means are on the scale

of
√
γ, comparable in size to the gaps between the arm means. Playing the arms significantly less

times results in their means essentially being indistinguishable. As we will see, because all arms

are played so many times, collectively their reward processes are well-approximated by Brownian

motions.
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Remark 1. For our analysis throughout the paper, finite 2 + α (with arbitrarily small α > 0)

moments for the rewards suffices (as in (7)), while the theoretical approach of Kuang and Wager

(2023) requires finite fourth moments.

Function Spaces and Weak Convergence

Throughout this paper, Dm[a,∞) to denotes the space of functions with domain [a,∞) and range

Rm, that are right-continuous and have limits from the left. For this space, we use the Skorohod

metric. Weak convergence is always denoted using ⇒, both for stochastic processes taking values

in Dm[a,∞) and for random variables taking values in Rm. Complete mathematical details for the

spaces Dm[a,∞) equipped with the Skorohod metric, as well as the theory of weak convergence

in such spaces, can be found in standard references such as Billingsley (1999), Ethier and Kurtz

(1986) and Whitt (2002).

3. Derivations of Diffusion Approximations

In the following sections, we derive an SDE approximation (Section 3.1) and a stochastic ODE

approximation (Section 3.2) for the Gaussian Thompson sampler, i.e., TS implemented using pos-

terior updating based on Gaussian priors and likelihoods. We assume that the rewards are from

general distributions (not necessarily Gaussian) and satisfy the conditions of the setup in Assump-

tion 1. For the Gaussian likelihood, we use a fixed variance c2∗ > 0, which may or may not correspond

to the limit variances σ2
k of the rewards (as in (6)). Later in the paper, we will complement the

theory of this section by studying EF Thompson samplers in Section 4.1 and then model mis-

specification issues in Section 4.3.

Before continuing on to the derivation of diffusion approximations, we first discuss a technical

issue that can arise. The behavior of TS can be highly erratic at the very beginning of a bandit

experiment under diffusion scaling (Assumption 1) when little data has been collected and the

algorithm is performing a lot of exploration by randomly sampling arms. This can create math-

ematical difficulties such as the breakdown of Lipschitz continuity in SDE approximations in an

arbitrarily small initial time interval (in continuous time), which in turn makes it challenging to

establish that the SDEs have unique solutions. Below, we discuss two ways of “smoothing” the

initial behavior of TS to restore Lipschitz continuity of the SDEs.

1) Smoothing via Concentrated Priors

One way to smooth out the initial behavior of TS is to use a concentrated prior. We use this

approach in Sections 3.1 and 3.2. From Assumption 1, the arm means µγ
k are concentrated around

µ∗ with sub-optimality gaps
√
γ∆γ

k, where the ∆γ
k are unknown. We assume that µ∗ and

√
γ are

known, and we use an independent N(µ∗, γ/b) prior for each arm in the Gaussian Thompson
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sampler, with fixed b > 0. Translated into practice, this means that the experimenter knows that

the arm means are in a “
√
γ-scale neighborhood” of µ∗ (so that the sub-optimality gaps, i.e., effect

sizes, are on the scale of
√
γ), perhaps from similar experiments run in the past. (To keep the

algebra simple, we assume without loss of generality that µ∗ = 0.) Then, the experimenter will run

a bandit experiment over time horizons scaling as 1/γ to learn about the sub-optimality gaps and

maximize cumulative reward.

Importantly, the use of γ-scale variance priors together with (1/γ)-scale time horizons ensures

the SDE approximations have desirable Lipschitz continuity properties and thus a unique strong

solution. The use of γ-scale variance priors together with data collected over (1/γ)-scale time

horizons naturally enable Bayesian inference about the
√
γ-scale sub-optimality gaps. If the prior

is less concentrated with variance scaling as ω(γ) as γ ↓ 0, then it will be asymptotically dominated

by the data collected over (1/γ)-scale time horizons. And if the prior is more concentrated with

variance scaling as o(γ) as γ ↓ 0, then it will asymptotically dominate the data collected.

2) Smoothing via ϵ-warm-start

A second way to smooth out the initial erratic behavior of TS is to sample all arms with fixed,

positive probabilities for an arbitrarily small initial time interval in continuous time, and then run

TS afterwards. We refer to this initialization procedure as ϵ-warm-start (defined below), and we

will use it in Section 3.3 and in Section 4.

Definition 1 (ϵ-warm-start). Fix some positive probabilities q1, . . . , qK (with
∑

k qk = 1). For

the initial ⌊ϵ/γ⌋ time periods, sample each arm k with probability qk. Then, run TS from time

⌊ϵ/γ⌋+1 onward.

Using ϵ-warm-start, we can ensure Lipschitz continuity of the SDE approximation, and thus a

unique strong solution. Moreover, the prior used in TS can be general and need not be concentrated

in any way. We can also think of ϵ-warm-start as an empirical Bayes approach, where a tiny fraction

of data is collected initially to learn a prior with the centering around µ∗ and the variance scale of

γ, after which TS using the learned prior is deployed.

3.1. SDE Approximation

To derive the SDE approximation for the Gaussian Thompson sampler, we use the random table

model of reward feedback introduced in Section 2. We will first show that the dynamics in this

setting are described by the evolution of two processes: Uγ = (Uγ
k , k ∈ [K]) and Sγ = (Sγ

k , k ∈ [K]),

defined via:

Uγ
k (t) = γ

⌊t/γ⌋∑
i=1

Iγk (i) (8)
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Sγ
k (t) =

√
γ

⌊t/γ⌋∑
i=1

Iγk (i)
Xγ

k (i)−µγ
k

σγ
k

, (9)

which are re-scaled and centered versions of (2) and (3), respectively.

Remark 2. Under the setup of Assumption 1, for a particular γ value, the overall regret Regγ(n)

at time n is related to the Uγ
k processes via:

Regγ(n) =
1
√
γ

∑
k∈[K]

Uγ
k (nγ)∆

γ
k. (10)

At time j + 1, conditional on Hγ
j (defined in (4)), the Gaussian Thompson sampler draws a

sample from the posterior distribution of each arm k:

µ̃γ
k(j+1)∼N

(
γ
∑j

i=1 I
γ
k (i)X

γ
k (i)

Uγ
k (jγ)+ bc2∗

,
c2∗γ

Uγ
k (jγ)+ bc2∗

)
. (11)

So, the probability of playing arm k can be expressed as:

P

(
k= argmax

l∈[K]

µ̃γ
l (j+1)

∣∣Hγ
j

)
(12)

= P

(
k= argmax

l∈[K]

{
Sγ
l (jγ)σ

γ
l +Uγ

l (jγ)d
γ
l

Uγ
l (jγ)+ bc2∗

+
c∗√

Uγ
l (jγ)+ bc2∗

Nl

} ∣∣∣∣∣Uγ(jγ), Sγ(jγ)

)
(13)

= pγk(U
γ(jγ), Sγ(jγ)), (14)

where the probability is taken over the independent standard Gaussian variables Nl, and for u=

(uk, k ∈ [K])∈ [0,∞)K and s= (sk, k ∈ [K])∈RK ,

pγk(u, s) = P

(
k= argmax

l∈[K]

{
slσ

γ
l +uld

γ
l

ul + bc2∗
+

c∗√
ul + bc2∗

Nl

})
. (15)

We can now re-express Uγ
k (t) and Sγ

k (t) from (8)-(9) as

Uγ
k (t) = γ

⌊t/γ⌋−1∑
i=0

pγk(U
γ(iγ), Sγ(iγ))+Mγ

k (t) (16)

Sγ
k (t) =

⌊t/γ⌋−1∑
i=0

√
pγk(U

γ(iγ), Sγ(iγ)) (Bγ
k ((i+1)γ)−Bγ

k (iγ)) , (17)

where Mγ = (Mγ
k , k ∈ [K]) and Bγ = (Bγ

k , k ∈ [K]) are defined via:

Mγ
k (t) = γ

⌊t/γ⌋−1∑
i=0

(Iγk (i+1)− pγk(U
γ(iγ), Sγ(iγ))) (18)

Bγ
k (t) =

√
γ

⌊t/γ⌋−1∑
i=0

Iγk (i+1)(Xγ
k (i+1)−µγ

k)√
pγk(U

γ(iγ), Sγ(iγ)) ·σγ
k

, (19)
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and (Iγk (i+1), k ∈ [K]) is a multinomial random variable with a single trial and success probabilities

pγk(U
γ(iγ), Sγ(iγ)).

As γ ↓ 0, we show that Mγ and Bγ converge weakly to the DK [0,∞) zero process and standard

K-dimensional Brownian motion, respectively. Additionally, since dγk → dk and σγ
k → σk (from (5)-

(6)), we have

pγk(u, s)→ pk(u, s) (20)

uniformly for (u, s) in compact subsets of [0,∞)K ×RK , where

pk(u, s) = P

(
k= argmax

l∈[K]

{
slσl +uldl
ul + bc2∗

+
c∗√

ul + bc2∗
Nl

})
. (21)

Thus, we expect (16)-(17) to be a discrete approximation to the SDE in integral form:

Uk(t) =

∫ t

0

pk(U(v), S(v))dv (22)

Sk(t) =

∫ t

0

√
pk(U(v), S(v))dBk(v), k ∈ [K] (23)

with standard K-dimensional Brownian motion B. As mentioned earlier in this section, the func-

tions pk in (21) are Lipschitz continuous, which ensures that the SDEs in (22)-(23) have a unique

(strong) solution; the mathematical details can be found in Chapter 5.2 of Karatzas and Shreve

(1998).

To conclude the above derivation, the rigorous SDE characterization is stated in Theorem 1

below. The proof of Theorem 1 can be found in Section 5.1, along with the development of the

supporting results for the proof. The rigorous argument closely follows the derivation above. The

main technical tool is the Continuous Mapping Theorem, together with the property that stochastic

integration is a continuous mapping of the integrand and integrator processes, which allows us to

pass from the pre-limit in (16)-(17) to the limit in (22)-(23).

Theorem 1. Under the diffusion scaling of Assumption 1 and the random table model of reward

feedback, for a K-armed bandit and the Gaussian Thompson sampler with prior variance scaling

as γ,

(Uγ , Sγ)⇒ (U,S) (24)

as γ ↓ 0 in D2K [0,∞), where (U,S) is the unique strong solution to the SDE:

dUk(t) = pk(U(t), S(t))dt (25)

dSk(t) =
√
pk(U(t), S(t))dBk(t) (26)

Uk(0) = Sk(0) = 0, k ∈ [K], (27)



11

with standard K-dimensional Brownian motion B, and functions pk as expressed in (21).

Moreover, for regret,

√
γRegγ(⌊·/γ⌋)⇒

∑
k∈[K]

Uk(·)∆k (28)

as γ ↓ 0 in D[0,∞).

3.2. Stochastic ODE Approximation

To derive the stochastic ODE approximation for the Gaussian Thompson sampler, we use the

reward stack model of reward feedback introduced in Section 2. Similar to the derivation of the SDE

approximation, we first show that the dynamics are described by the evolution of two processes:

Uγ = (Uγ
k , k ∈ [K]) with the same expression as in (8), and Zγ ◦ Uγ = (Zγ

k (U
γ
k ), k ∈ [K]) defined

via:

Zγ
k (U

γ
k (t)) =

√
γ

U
γ
k
(t)/γ∑
i=1

Xγ
k (i)−µγ

k

σγ
k

, (29)

where Zγ = (Zγ
k , k ∈ [K]) has the expression:

Zγ
k (t) =

√
γ

⌊t/γ⌋∑
i=1

Xγ
k (i)−µγ

k

σγ
k

, (30)

which is a re-scaled and centered version of (3). (For vector-valued functions f and g, we use f ◦ g

to denote component-wise composition of f and g.) For the stochastic ODE approximation, since

Uγ has the same expression as in (8), the relationship to regret Regγ(n) is the same as in Remark

2.

Remark 3. We point out that the distribution of the process Sγ
k (t) (as defined in (9)) and of the

process Zγ
k (U

γ
k (t)) (as defined in (29)) are the same. As can be seen in the proof of Theorem 2,

their corresponding weak limit processes also have the same distribution. All other aspects of the

SDE and stochastic ODE approximations are the same, and so they are distributionally equivalent,

as we will make clear below in the discussion leading up to and in the statement of Theorem 2.

At time j + 1, conditional on Hγ
j (defined in (4)), the Gaussian Thompson sampler draws a

sample from the posterior distribution of each arm k:

µ̃γ
k(j+1)∼N

(
γ
∑U

γ
k
(jγ)/γ

i=1 Xγ
k (i)

Uγ
k (jγ)+ bc2∗

,
c2∗γ

Uγ
k (jγ)+ bc2∗

)
. (31)
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So, the probability of playing arm k can be expressed as:

P

(
k= argmax

l∈[K]

µ̃γ
l (j+1)

∣∣Hγ
j

)
(32)

= P

(
k= argmax

l∈[K]

{
Zγ

l (U
γ
l (jγ))σ

γ
l +Uγ

l (jγ)d
γ
l

Uγ
l (jγ)+ bc2∗

+
c∗√

Uγ
l (jγ)+ bc2∗

Nl

} ∣∣∣∣∣Uγ(jγ),Zγ ◦Uγ(jγ)

)
(33)

= pγk(U
γ(jγ),Zγ ◦Uγ(jγ)), (34)

where the probability is taken over the independent standard Gaussian variables Nl, and functions

pγk are given by (21).

We can now re-express Uγ
k (t) as

Uγ
k (t) = γ

⌊t/γ⌋−1∑
i=0

pγk(U
γ(iγ),Zγ ◦Uγ(iγ))+Mγ

k (t), k ∈ [K], (35)

where Mγ = (Mγ
k , k ∈ [K]) is defined via:

Mγ
k (t) = γ

⌊t/γ⌋−1∑
i=0

(Iγk (i+1)− pγk(U
γ(iγ),Zγ ◦Uγ(iγ))) , (36)

and (Iγk (i+1), k ∈ [K]) is a multinomial random variable with a single trial and success probabilities

pγk(U
γ(iγ),Zγ ◦Uγ(iγ)).

As γ ↓ 0, we show that Mγ and Zγ converge weakly to the DK [0,∞) zero process and standard

K-dimensional Brownian motion, respectively. As in previous section, the convergence in (20) holds.

Thus, we expect (35) to be a discrete approximation to the stochastic ODE in integral form:

Uk(t) =

∫ t

0

pk(U(v),B ◦U(v))dv, k ∈ [K], (37)

with standard K-dimensional Brownian motion B, and functions pk as expressed in (21).

To conclude the above derivation, the rigorous stochastic ODE characterization is stated in

Theorem 2 below. The proof of Theorem 2 can be found in Section 5.2. The rigorous argument

closely follows the derivation above, using the Continuous Mapping Theorem, together with the

property that Riemann integration is a continuous mapping of the integrand and integrator pro-

cesses, which allows us to pass from the pre-limit in (35) to the limit in (37). As can be seen

from the proof, the stochastic ODE representation in Theorem 2 can be recovered from the SDE

representation in Theorem 1 using the fact that any continuous martingale can be represented as

a Brownian motion evolving according to a random clock/time-change. While we generally cannot

claim that the stochastic ODE has a unique adapted (pathwise) solution (because the sample paths

of Brownian motion are not Lipschitz continuous), the limit U in Theorem 2 is a particular adapted

(pathwise) solution of the stochastic ODE, and is distributionally equivalent to its counterpart in

the unique strong solution of the SDE from Theorem 1.
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Theorem 2. Under the diffusion scaling of Assumption 1 and the reward stack model of reward

feedback, for a K-armed bandit and the Gaussian Thompson sampler with prior variance scaling

as γ,

(Uγ ,Zγ ◦Uγ)⇒ (U,B ◦U) (38)

as γ ↓ 0 in D2K [0,∞), where U is an adapted (pathwise) solution to the stochastic ODE:

dUk(t) = pk(U(t),B ◦U(t))dt (39)

Uk(0) = 0, k ∈ [K], (40)

with standard K-dimensional Brownian motion B, and functions pk as expressed in (21).

The limit stochastic ODE and one of its adapted (pathwise) solutions can be derived from the

limit SDE (in Theorem 1) and its unique strong solution. In particular, with (U,S) as the unique

strong solution to the SDE in (25)-(27), we have S(t) = B̃ ◦U(t) for some standard K-dimensional

Brownian motion B̃. So, the adapted (pathwise) solution to the stochastic ODE referenced above is

distributionally equivalent to the unique strong solution of the SDE.

Moreover, for regret, (28) holds in the stochastic ODE setting.

3.3. Additional Approximations

Recall from the development of Theorems 1 and 2, with the functions pk as defined in (21), that

it is important for (u, s) 7→ pk(u, s) to be Lipschitz continuous, which ensures that the limit SDEs

and stochastic ODEs have unique solutions. In Corollary 1, we state a result for general sampling-

based bandit algorithms that does not involve Lipschitz continuous limit sampling probabilities

pk. In such settings, there may not be a unique solution to the limit SDE or stochastic ODE.

Nevertheless, the rescaled pre-limit processes, for example, (Uγ ,Zγ ◦ Uγ) in the stochastic ODE

setting, will still be tight. So, every subsequence as γ ↓ 0 of pre-limit processes will have a further

subsequence that converges weakly to a limit process that satisfies the stochastic ODE. However,

these weak limit processes may be distinct in general, so we simply characterize their evolution

equations. The justification for Corollary 1 follows directly from the proof of Theorem 2.

Corollary 1. Under the diffusion scaling of Assumption 1, for a K-armed bandit and a sampling-

based algorithm, suppose that as γ ↓ 0, the sampling probabilities pγk(u, s)→ pk(u, s) uniformly for

(u, s) in compact subsets of [0,∞)K × RK, where pk is a continuous function. Then, under the

reward stack model of reward feedback, the weak limit points of (Uγ ,Zγ ◦Uγ) in D2K [0,∞) as γ ↓ 0
are of the form (U,B ◦U), where U is an adapted (pathwise) solution of the stochastic ODE:

dUk(t) = pk(U(t),B ◦U(t))dt (41)

Uk(0) = 0, k ∈ [K], (42)
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with standard K-dimensional Brownian motion B.

Next, we develop a diffusion approximation for the Gaussian Thompson sampler without assum-

ing a concentrated prior with variance scaling as γ. Specifically, we consider any fixed Gaussian

prior (with constant variance) in the asymptotics as γ ↓ 0. Unlike in Sections 3.1-3.2, here we can

take µ∗ ∈R to be unknown, since we are not using concentrated priors and do not need to center

such priors on µ∗. Then, the functions pk in (21) become:

pk(u, s) = P

(
k= argmax

l∈[K]

{
slσl

ul

+ dl +
c∗√
ul

Nl

})
, (43)

where the probability is taken over the independent standard Gaussian variables Nl.

However, as discussed at the beginning of Section 3, the function (u, s) 7→ pk(u, s) in (43) is no

longer Lipschitz continuous for points near ul = 0, l ∈ [K]. Nevertheless, the problem with the pk

in (43) only exists for an infinitesimally small initial interval. Whenever all inputs Ul(t), l ∈ [K] to

the ul components in (43) become strictly positive, then from that time onward, there is Lipschitz

continuity of the pk. It then follows that there is a unique strong solution to the SDE and an adapted

(pathwise) solution to the corresponding stochastic ODE, which are distributionally equivalent

representations of the weak limit. In Theorem 3, we use ϵ-warm-start (recall Definition 1) to ensure

Lipschitz continuity. The proof of Theorem 3 is a simple modification of those of Theorems 1 and

2, and is thus omitted.

Theorem 3. Under the diffusion scaling of Assumption 1, consider a K-armed bandit and the

Gaussian Thompson sampler with a fixed prior variance (no γ-dependence) and ϵ-warm-start.

Then, under the random table model of reward feedback,

(Uγ , Sγ)⇒ (U,S) (44)

as γ ↓ 0 in D2K [ϵ,∞), where (U,S) is the unique strong solution to the SDE:

dUk(t) = pk(U(t), S(t))dt (45)

dSk(t) =
√
pk(U(t), S(t))dBk(t) (46)

Uk(ϵ) = qkϵ (47)

Sk(ϵ) =
√
qkBk(ϵ), k ∈ [K], (48)

with standard K-dimensional Brownian motion B, and functions pk as expressed in (43).

Moreover, under the reward stack model of reward feedback, a distributionally equivalent charac-

terization of the dynamics of (U,S) in (45)-(46) is in terms of (U,B ◦U), where U is an adapted

(pathwise) solution to the stochastic ODE:

dUk(t) = pk(U(t),B ◦U(t))dt, k ∈ [K]. (49)

Furthermore, for regret, (28) holds in both the SDE and stochastic ODE settings.
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4. Further Insights from Diffusion Approximations

4.1. Approximations for Exponential Family Thompson Samplers

So far, we have focused on the Gaussian Thompson sampler. In Proposition 1 below, we show that

the sampling behaviors and process-level dynamics of EF Thompson samplers can be approximated

by those of the Gaussian Thompson sampler. (Recall from the Introduction that EF Thompson

samplers are versions of TS implemented using posterior updating with any prior distribution

(satisfying modest regularity conditions) and any single-parameter exponential family likelihood.)

In the literature, minimax or worst-case regret analysis (which is essentially diffusion scaling, with

sub-optimality gaps scaling as 1/
√
n with time horizon n) is carried out on a case-by-case basis

for the many variants of TS (with posterior updating based on Gaussian prior and likelihood,

beta prior and Bernoulli likelihood, etc.). Our approximation of EF Thompson samplers by the

Gaussian Thompson sampler suggests that for minimax regret analysis, it suffices to simply analyze

the Gaussian Thompson sampler, which has minimax optimal dependence of expected regret on

the time horizon (Agrawal and Goyal 2013, 2017).

For Proposition 1, the main step is to establish under diffusion scaling that the posterior distri-

butions of EF Thompson samplers are approximately Gaussian. To develop the Gaussian approxi-

mation, in this section we assume that the arm reward distributions are from an exponential family

P µ parameterized by mean µ. The exponential family distributions have the form:

P µ(dx) = exp(θ(µ) ·x−Λ(µ))P (dx), (50)

where P is a base distribution, θ(µ) ∈R is the value of the tilting parameter resulting in a mean

of µ, and Λ is the cumulant generating function. Let (µ,µ) denote the open interval of all possible

mean values achievable by the family P µ (for some value of the tilting parameter θ(µ)∈R).

For simplicity, suppose we know that the mean reward for all arms belong to a bounded, open

interval I, with inf I > µ and supI < µ. (The analysis is simplified by avoiding the boundaries µ

and µ.) Suppose also that Assumption 1 holds, and that for the distributions Qγ
k with means µγ

k

from Assumption 1, we have Qγ
k = P µ

γ
k , with all µγ

k ∈ I. For the σk in (6), here we have σk = σ∗ for

all k, where σ2
∗ is the variance of P µ∗ , with the µ∗ from (5).

We consider EF Thompson samplers with posterior updating based on the likelihood of the

exponential family P µ (with mean µ ∈ I), together with any prior (for the mean) with bounded

density, support contained in I, and continuous and positive density in a neighborhood of µ∗.

For simplicity, we use the same prior for every arm, with independence across arms (and no γ-

dependence).
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The above setup leads to the following Proposition 1 for EF Thompson samplers under diffusion

scaling. The proof of Proposition 1 is provided in Appendix A. It uses a version of the Bernstein-

von Mises Theorem, i.e., a Gaussian approximation for the posterior distribution, which can be

found in Proposition 5 in Appendix B.

Proposition 1. Consider the setup described above, with a K-armed bandit under the diffusion

scaling of Assumption 1, the arm reward distributions belonging to an exponential family of the

form in (50), and the corresponding EF Thompson sampler with a prior having continuous and

positive density in a neighborhood of µ∗.

Then, under ϵ-warm-start, we have weak convergence to the limits in (44)-(49) of Theorem 3,

with

pk(u, s) = P

(
k= argmax

l∈[K]

{
slσ∗

ul

+ dl +
σ∗√
ul

Nl

})
, (51)

where the probability is taken over the independent standard Gaussian variables Nl.

Furthermore, for regret, (28) continues to hold in both the SDE and stochastic ODE settings.

The conclusion of Proposition 1 (with the pk(u, s) in (51)) matches that of Theorem 3 (with the

pk(u, s) in (43)) when (in the context of Theorem 3) the limit variances σ2
k in (6) match the variance

c2∗ used in the Gaussian likelihood of the Gaussian Thompson sampler.

Our results here also indicate that under diffusion scaling, the Gaussian Thompson sampler

is a good approximation of other variants of TS, including ones involving approximations of the

posterior distribution, for example, via Laplace approximation. Since the Gaussian Thompson

sampler is known to have optimal or near-optimal expected regret performance in a wide range of

settings (Agrawal and Goyal 2013, Korda et al. 2013, Agrawal and Goyal 2017), this suggests that

bandit algorithms based on Gaussian posterior approximation can perform similarly well under

diffusion scaling. See Chapelle and Li (2011) and Chapter 5 of Russo et al. (2019) for discussions

of such approximations.

4.2. Approximations for Bootstrap Sampler

The bootstrap and related ideas such as subsampling have recently been proposed as mechanisms

for exploration in bandit problems (Baransi et al. 2014, Eckles and Kaptein 2014, Osband and

Van Roy 2015, Tang et al. 2015, Elmachtoub et al. 2017, Vaswani et al. 2018, Kveton et al. 2019a,b,

Russo et al. 2019, Kveton et al. 2020b,a, Baudry et al. 2020). In this section, we consider the

bootstrap sampler introduced earlier, which is one natural implementation of bootstrapping to

induce exploration in bandit problems. For the bootstrap sampler, in each time period, a single
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(non-parametric) bootstrapped sample mean is generated for each arm, and the arm with the

greatest one is played.

In Proposition 2 below, we show that for general reward distributions, the sampling behavior

and process-level dynamics of the bootstrap sampler can be approximated by those of the Gaussian

Thompson sampler. This is similar in spirit to Proposition 1. But unlike in Proposition 1, here the

reward distributions do not need to belong to any exponential family. Here, we allow for arbitrary

reward distributions P µ with means µ∈ I, where I ⊂R is an open interval. The only requirement

on the P µ is that the condition in (119) is satisfied. Given the optimality or near optimality of

the Gaussian Thompson sampler discussed previously, our results here suggest that the bootstrap

sampler can be an effective means of balancing exploration and exploitation under diffusion scaling,

with the added benefit of not needing to make distributional assumptions.

The proof of Proposition 2 is the same as that of Proposition 1, except we use a Gaussian

approximation for the bootstrapped sample mean, which is developed in Proposition 6 in Appendix

C.

Proposition 2. Consider a K-armed bandit under the diffusion scaling of Assumption 1, and

suppose that

lim
y→∞

sup
µ∈I

E[(Xµ)2I
(
(Xµ)2 > y

)
] = 0, (52)

with Xµ ∼ P µ for each µ∈ I.

Then, for the bootstrap sampler under ϵ-warm-start, we have weak convergence to the limits in

(44)-(49) of Theorem 3, with

pk(u, s) = P

(
k= argmax

l∈[K]

{
slσl

ul

+ dl +
σl√
ul

Nl

})
. (53)

Furthermore, for regret, (28) continues to hold in both the SDE and stochastic ODE settings.

Compared to Theorem 3 (with the pk(u, s) in (43)), in Proposition 2 (with the pk(u, s) in (53)),

the bootstrap sampler automatically adapts to the limit variance σ2
k for each arm k, rather than

having to specify some variance c2∗ as in the Gaussian Thompson sampler. This is reflected in the

(σl/
√
ul)Nl terms in (53)), compared to the (c∗/

√
ul)Nl terms in (43).

4.3. Model Mis-specification

In this section, we show that under the diffusion scaling of Assumption 1, the regret of the Gaussian

Thompson sampler, and that of other TS variants like EF Thompson samplers, are robust to mis-

specification of the reward distributions. Asymptotically, under diffusion scaling, only the limit
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means and variances (as in (5)-(6)) of the reward distributions influence the dynamics of the

Gaussian Thompson sampler. So, in Theorems 1-3, mis-specification corresponds to mis-match

between the limit variances σ2
k in (6) and the variance c2∗ specified in the Gaussian likelihood.

In Proposition 3 below, we establish that under the diffusion scaling of Assumption 1, the regret

(as expressed in (10) in Remark 2) of the Gaussian Thompson sampler (on the 1/
√
γ scale) is

continuous with respect to the limit variances σ := (σk, k ∈ [K]). As mentioned in the Introduction,

this contrasts with the results in the instance-dependent Lai-Robbins asymptotic regime (Lai and

Robbins 1985). In that setting, as recently shown in Fan and Glynn (2024), the slightest amount

of reward distribution mis-specification (e.g., setting the variance parameter of a bandit algorithm

to be just slightly less than the true variance of the rewards), can cause the regret performance

to sharply deteriorate (from scaling as log(n) to polynomial in n with horizon n). Furthermore,

previously in Section 4.1, we showed that EF Thompson samplers can be approximated by the

Gaussian Thompson sampler under diffusion scaling. This suggests that under diffusion scaling,

the robustness of TS to model mis-specification extends to other settings as well.

Proposition 3. Let (U,S) = (Uk, Sk, k ∈ [K]) denote either the solution to (25)-(27) in Theorem 1

(equivalently, (39)-(40) in Theorem 2) with σ-dependence as in (21), or the solution to (45)-(48) in

Theorem 3 with σ-dependence as in (43). Then, the distribution of (U,S) is continuous with respect

to σ, i.e., for any bounded continuous function f :D2K [0,∞)→R, the mapping σ 7→Eσ[f(U,S)] is

continuous. Moreover, for any fixed t > 0,

lim
γ↓0

√
γEσ[Regγ(⌊t/γ⌋)] =

∑
k∈[K]

Eσ[Uk(t)]∆k,

where σ 7→Eσ[Uk(t)] is a positive, continuous mapping for each arm k ∈ [K].

4.4. Batched Updates

In some settings, it may be impractical to update a bandit algorithm after each time period. Instead,

updates are “batched” so that the algorithm commits to playing an (adaptively determined) arm

for an interval of time (which can also be adaptively determined). Then, the algorithm is updated

all at once with the data collected during the interval. For a time horizon of n, suppose the batch

sizes pre-determined before the start of the experiment and are o(n). Then, under diffusion scaling,

we would obtain weak convergence to the same SDEs and stochastic ODEs as in the case of ordinary

non-batched TS. Indeed, a time interval of o(n) in the discrete pre-limit system corresponds to

(after dividing by n) an infinitesimally small time interval in the continuous limit system. This

suggests that as long as the number of batches increases to infinity (possibly at an arbitrarily slow

rate) as n→∞, and each batch is not too large (at most o(n) periods), then the distribution of
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regret will be approximately the same compared to the case in which one updates in every period

(batch sizes of one). To make this precise, we have the following proposition, whose straightforward

proof is omitted.

Proposition 4. In the settings of Theorems 1, 2 and 3, the same conclusions hold for the Gaussian

Thompson sampler with batches of size o(n).

The discussion and proposition above correspond nicely to results in the literature regarding opti-

mal batching for bandits in the minimax gap regime from the perspective of expected regret. As

shown in Cesa-Bianchi et al. (2013), Perchet et al. (2016) and Gao et al. (2019), in the minimax

regime, a relatively tiny, O(log log(n)), number of batches is necessary and sufficient (sufficient for

specially designed algorithms) to achieve the optimal order of expected regret.

5. Proofs for Main Results

5.1. Proofs for SDE Approximation

In this section, we prove the SDE approximation in Theorem 1 (from Section 3.1). We first discuss a

(random) step function approximation (with any desired accuracy) for functions in Dm[0,∞), due

to Kurtz and Protter (1991). The step function approximation is technically useful for passing from

the discrete versions of Itô integrals to the Itô integrals themselves in the continuous weak limit. We

describe the approximation in Definition 2, and discuss integration with the approximation applied

to the integrand in Definition 3. Then, Lemma 1, which is a summary of useful technical results

from Kurtz and Protter (1991) (see their Lemma 6.1 and its proof, as well as the proof of their

Theorem 1), ensures that integration is a continuous mapping when the integrand is approximated

in such a way. Following these, we provide proof of Theorem 1 using the continuity properties at

hand together with the Continuous Mapping Theorem. We conclude the section with Lemmas 2

and 3, which establish the tightness of stochastic processes and convergence to Brownian motion

used in the proof of Theorem 1.

Definition 2 (Step Function Approximation). For any ϵ > 0, we construct a random step

function mapping χϵ :Dm[0,∞)→Dm[0,∞) as follows. We use the ℓ1 norm, with ||w|| :=
∑m

i=1 |wi|
for w ∈Rm. For any z ∈Dm[0,∞), define inductively the random times τj(z) starting with τ0(z) = 0:

τj+1(z) = inf{t > τj(z) : max(||z(t)− z(τj(z))||, ||z(t−)− z(τj(z))||)≥ ϵVj}, (54)

where Vj
iid∼Unif(1/2,1). Then, define χϵ(z)∈Dm[0,∞) by

χϵ(z)(t) = z(τj(z)), t∈ [τj(z), τj+1(z)), (55)

so that χϵ(z) is a step function (piecewise constant), and almost surely,

sup
t≥0

||χϵ(z)(t)− z(t)|| ≤ ϵ. (56)
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Definition 3 (Integration with Step Functions). On an interval [a, b], let f1, f2 be R-

valued right-continuous functions with left limits, where f1 is a step function with jump points

t1 < · · · < tj in [a, b]. We will always use the following definition of integration for step function

integrands (setting t0 = a and tj+1 = b):∫ b

a

f1(t)df2(t) =

j∑
i=0

f1(ti) (f2(ti+1)− f2(ti)) . (57)

Then, for any ϵ > 0, with the random step function mapping χϵ :Dm[0,∞)→Dm[0,∞) in (55),

define the integral mapping Iϵ :D2m[0,∞)→Dm[0,∞) component-wise for k= 1, . . . ,m via

Iϵ
k(g,h)(t) =

∫ t

0

χϵ
k(g)(v)dhk(v), (58)

for g,h∈Dm[0,∞) (with the definition of integral in (57)).

Lemma 1 (Continuity of Integration with Step Functions). Let the sequences xn, yn ∈

Dm[0,∞) and also x, y ∈ Dm[0,∞) such that jointly (xn, yn) → (x, y) in D2m[0,∞) as n → ∞.

For ϵ > 0, let χϵ : Dm[0,∞) → Dm[0,∞) be the random step function mapping in (55), and let

Iϵ :D2m[0,∞)→Dm[0,∞) be the integral mapping in (58). Then,

(xn, yn,Iϵ(xn, yn))
a.s.→ (x, y,Iϵ(x, y)) (59)

in D3m[0,∞) as n→∞.

Moreover, let zn be a sequence of Dm[0,∞) processes, adapted to a sequence of filtrations Fn =

(Fn
t , t≥ 0). Then, χϵ(zn) is adapted to the corresponding sequence of augmented filtrations Gn =

(Gn
t , t≥ 0), where Gn

t = σ(Fn
t ∪V), with V = σ(Vj, j ≥ 1) being the sigma-algebra generated by the

extra randomization used to construct χϵ (independent of the filtrations Fn).

Proof of Theorem 1. We start with the discrete approximation (16)-(19) from our derivation

in Section 3.1. We denote the joint processes via (Uγ , Sγ ,Bγ ,Mγ) = (Uγ
k , S

γ
k ,B

γ
k ,M

γ
k , k ∈ [K]), and

recall that they are processes in D4K [0,∞).

Our proof strategy is as follows. We will show that for every subsequence of (Uγ , Sγ), there is

a further subsequence which converges weakly to a limit that is a solution to the SDE. Because

the drift and dispersion functions pk and
√
pk of the SDE (25)-(26) are Lipschitz-continuous and

bounded on their domain of definition, the SDE has a unique strong solution (Theorem 5.2.9 of

Karatzas and Shreve (1998)). Thus, (Uγ , Sγ) must converge weakly to the unique strong solution

of the SDE.

By Lemma 2 (stated and proved after the current proof), the joint processes (Uγ , Sγ ,Bγ ,Mγ) are

tight in D4K [0,∞), and thus, Prohorov’s Theorem ensures that for each subsequence, there is a fur-

ther subsequence which converges weakly to some limit process (U,S,B,M) = (Uk, Sk,Bk,Mk, k ∈
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[K]) (see Chapter 3 of Ethier and Kurtz (1986), Chapters 1 and 3 of Billingsley (1999), or Chapter

11 of Whitt (2002)). From now on, we work with this further subsequence, and for notational

simplicity, we still index this further subsequence by γ. So, we have

(Uγ , Sγ ,Bγ ,Mγ)⇒ (U,S,B,M). (60)

Because Mγ consists of martingale differences, by a Chebyshev bound, we have Mγ
k (t)

P→ 0 for each

k ∈ [K] and any t > 0 as n→∞, and thus, M is the DK [0,∞) zero process. By Lemma 3 (stated

and proved after the current proof), B is standard K-dimensional Brownian motion.

Now define the processes Aγ = (Aγ
k, k ∈ [K]) and A= (Ak, k ∈ [K]), where

Aγ
k(t) = pγk(U

γ(t), Sγ(t)) (61)

Ak(t) = pk(U(t), S(t)). (62)

Since pγk(u, s) → pk(u, s) as γ ↓ 0 uniformly for (u, s) in compact subsets of [0,∞)K × RK , and

pk(u, s) is continuous at all (u, s)∈ [0,∞)K×RK , by the Generalized Continuous Mapping Theorem

(Lemma 6) applied to the processes in (61)-(62), we have from (60),

(Uγ , Sγ ,Bγ ,Mγ ,Aγ)⇒ (U,S,B,M,A). (63)

Additionally, define the processes Ũγ = (Ũγ
k , k ∈ [K]) and Ũ = (Ũk, k ∈ [K]), where

Ũγ
k (t) =

∫ t

0

pγk(U
γ(v), Sγ(v))dv (64)

Ũk(t) =

∫ t

0

pk(U(v), S(v))dv. (65)

Recall that

Uγ
k (t) = γ

⌊t/γ⌋−1∑
i=0

pγk(U
γ(iγ), Sγ(iγ))+Mγ

k (t).

For each k ∈ [K], because Mγ
k converges weakly to the D[0,∞) zero process and also

sup
t≥0

∣∣∣∣∣γ
⌊t/γ⌋−1∑

i=0

pγk(U
γ(iγ), Sγ(iγ))− Ũγ

k (t)

∣∣∣∣∣≤ γ,

we have for any T > 0,

sup
0≤t≤T

∣∣∣Uγ
k (t)− Ũγ

k (t)
∣∣∣ P→ 0. (66)

Thus, by the fact that integration is a continuous functional with respect to the Skorohod metric

(Theorem 11.5.1 of Whitt (2002)) and the Continuous Mapping Theorem, we have from (63),

(Uγ , Sγ ,Bγ , Ũγ ,Aγ)⇒ (U,S,B, Ũ ,A). (67)
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Let ϵ > 0. Let χϵ be the random step function mapping defined in (54) and (55), and let Iϵ be

the corresponding integral operator defined in (58). Recall from (17), (19) and (61), that for each

k ∈ [K],

Sγ
k (t) =

∫ t

0

√
Aγ

k(v−)dBγ
k (v), (68)

and define the process Ŝγ = (Ŝγ
k , k ∈ [K]) := Iϵ(

√
Aγ ,Bγ), i.e., for each k ∈ [K],

Ŝγ
k (t) =

∫ t

0

χϵ
k

(√
Aγ(v−)

)
dBγ

k (v). (69)

By Lemma 1 and the Continuous Mapping Theorem, with the continuity of the mapping (x, y) 7→

(x, y,Iϵ(x, y)) established in (59), we have from (67),

(Uγ , Sγ ,Bγ , Ũγ , Ŝγ)⇒ (U,S,B, Ũ , Ŝ), (70)

where the process Ŝ = (Ŝk, k ∈ [K]) := Iϵ(
√
A,B), i.e., for each k ∈ [K],

Ŝk(t) =

∫ t

0

χϵ
k

(√
A(v−)

)
dBk(v). (71)

We also define the process S̃ = (S̃k, k ∈ [K]), where for each k ∈ [K],

S̃k(t) =

∫ t

0

√
Ak(v−)dBk(v). (72)

Note that both of the processes in (71) and (72) are well defined as Itô integrals, since by Lemma

3, the integrands are non-anticipative with respect to the Brownian motions Bk. (As defined in

(54)-(55), χϵ depends on exogenous randomization that is independent of the Bk.) By Lemma 1,

because χϵ is an ϵ-uniform approximation (see (56)), for each k ∈ [K] and any T > 0,

E
[
sup

0≤t≤T

∣∣∣Sγ
k (t)− Ŝγ

k (t)
∣∣∣]≤ ϵE

[
γ

⌊T/γ⌋−1∑
i=0

E
[
Iγk (i+1)(Xγ

k (i+1)−µγ
k)

2

pγk(U
γ(iγ), Sγ(iγ)) · (σγ

k)
2

∣∣∣∣Hγ
i

]]1/2
≤ ϵ

√
T . (73)

Similarly, for each k and any T > 0,

E
[
sup

0≤t≤T

∣∣∣Ŝk(t)− S̃k(t)
∣∣∣]≤ ϵE [⟨Bk⟩T ]1/2 = ϵ

√
T , (74)

where t 7→ ⟨Bk⟩t denotes the quadratic variation process for Bk. Putting together (66), (70)-(74)

and sending ϵ ↓ 0, we have

(Uγ , Sγ ,Bγ ,Uγ , Sγ)⇒ (U,S,B, Ũ , S̃). (75)
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Recalling the definition of Ũ in (65) as well as that of S̃ in (72) and the Ak in (62), we see from

(75) that the limit processes (U,S,B) satisfy the SDE:

Uk(t) =

∫ t

0

pk(U(v), S(v))dv (76)

Sk(t) =

∫ t

0

√
pk(U(v), S(v))dBk(v), k= 1, . . . ,K. (77)

(Note that from (76)-(77), it is clear that (U,S,B) is adapted to the (augmented) filtration Ft =

σ(FB
t ∪L), where FB

t = σ (B(v) : 0≤ v≤ t), with L denoting the collection of all P-null sets.) □

Lemma 2. The processes (Uγ , Sγ ,Bγ ,Mγ) defined in (16)-(19) are tight in D4K [0,∞).

Proof of Lemma 2. We recall that the processes have the following expressions for k= 1, . . . ,K.

Uγ
k (t) = γ

⌊t/γ⌋∑
i=1

Iγk (i) (78)

Sγ
k (t) =

√
γ

⌊t/γ⌋∑
i=1

Iγk (i)
Xγ

k (i)−µγ
k

σγ
k

(79)

Mγ
k (t) = γ

⌊t/γ⌋−1∑
i=0

(Iγk (i+1)− pγk(U
γ(iγ), Sγ(iγ))) (80)

Bγ
k (t) =

√
γ

⌊t/γ⌋−1∑
i=0

Iγk (i+1)(Xγ
k (i+1)−µγ

k)√
pγk(U

γ(iγ), Sγ(iγ)) ·σγ
k

(81)

Note that (78)-(79) are just different expressions of the same quantities in (16)-(17). With a slight

abuse of notation, let (Hγ
t , t≥ 0) denote the continuous, piecewise constant (and right-continuous)

interpolation of the discrete-time filtration (Hγ
j , j ≥ 0) defined in (4), so that (78)-(81) are all

adapted toHγ
t . Also, the process in (78) is uniformly bounded and increasing, and those in (79)-(81)

are square-integrable martingales.

By Lemma 7, to show tightness of the joint processes (Uγ , Sγ ,Bγ ,Mγ), we just need to show

tightness of each component sequence of processes and each pairwise sum of component sequences

of processes. We use Lemma 8 to verify tightness in each case. Condition (T1) can be directly

verified using a sub-martingale maximal inequality (for example, Theorem 3.8(i) of Chapter 1

of Karatzas and Shreve (1998)), along with a union bound when dealing with pairwise sums of

component processes. Conditions (T2)-(T3) can also be directly verified. For fixed T > 0, δ > 0 and

all γ > 0, we can set Aγ
δ (T ) = δ for each individual component process, and we can set Aγ

δ (T ) = 4δ

(using the bound: (x+ y)2 ≤ 2x2 +2y2) for each pairwise sum of component processes. □

Lemma 3. Following Lemma 2, for any subsequence of (Uγ , Sγ ,Bγ ,Mγ) that converges weakly

in D4K [0,∞) to some limit process (U,S,B,M), the component B is standard K-dimensional

Brownian motion. Moreover, U and S are non-anticipative with respect to B, i.e., B(t+ v)−B(t)

is independent of (U(v′), S(v′)) for 0≤ v′ ≤ t and v≥ 0.
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Proof of Lemma 3. To show that Bγ ⇒ B, where B is standard K-dimensional Brownian

motion, we apply the martingale functional central limit theorem stated in Lemma 9. Below, we

verify (M1) and (M2) to ensure Lemma 9 holds. The non-anticipative property follows from the

same property in the pre-limit, i.e., Uγ and Sγ are non-anticipative with respect to Bγ .

Verification of (M1)

Because Iγj (i)I
γ
k (i) = 0 for j ̸= k and all i= 1,2, . . . (only one arm is played in each time period i),

we have Σjk = 0 for j ̸= k. For the diagonal elements, we have Σkk = 1 for each k= 1, . . . ,m, as the

following argument shows. As shorthand, denote pγk(i) := pγk(U
γ(iγ), Sγ(iγ)). Then,

γ

⌊t/γ⌋∑
i=0

E

[
Iγk (i+1)

pγk(i)

(
Xγ

k (i+1)−µγ
k

σγ
k

)2 ∣∣∣∣Hγ
i

]

= γ

⌊t/γ⌋−1∑
i=0

E
[
Iγk (i+1)

∣∣∣∣Hγ
i

]
pγk(i)

E

[(
Xγ

k (i+1)−µγ
k

σγ
k

)2 ∣∣∣∣Hγ
i

]
(82)

= γ⌊t/γ⌋→ t

as γ ↓ 0. Here, (82) follows from pγk(i) = pγk(U
γ(iγ), Sγ(iγ)) being Hγ

i -measurable, and Iγk (i+1) and

(Xγ
k (i+1)−µγ

k)
2/(σγ

k)
2 being independent conditional on Hγ

i .

Verification of (M2)

For each k= 1, . . . ,m, denote

W γ
k (i+1)=

Iγk (i+1)(Xγ
k (i+1)−µγ

k)√
pγk(i) ·σ

γ
k

.

By Markov’s inequality, it suffices to show that for each fixed i= 0,1, . . . ,

E
[
W γ

k (i+1)2I (|W γ
k (i+1)|> ϵ/

√
γ)
]
→ 0 (83)

as γ ↓ 0.

We have the following three observations. 1) (Uγ , Sγ) is a tight sequence, as established in Lemma

2, which implies stochastic boundedness of each component with respect to the supremum norm.

2) pγk(u, s)→ pk(u, s) as γ ↓ 0 uniformly for (u, s) in compact subsets of [0,∞)K ×RK . 3) pk(u, s)

is continuous and strictly positive for all (u, s)∈ [0,∞)K ×RK . Given these three observations, for

any η > 0, there exists δ ∈ (0,1) such that for γ sufficiently close to zero,

P
(

inf
v∈[0,t]

pγk(U
γ(v), Sγ(v))< δ

)
≤ η.

We then have

E
[
W γ

k (i+1)2I (|W γ
k (i+1)|> ϵ/

√
γ) I (pγk(i)< δ)

]
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≤E
[
W γ

k (i+1)2I (pγk(i)< δ)
]

=E

[
I (pγk(i)< δ)

pγk(i)
E

[
Iγk (i+1)

(
Xγ

k (i+1)−µγ
k

σγ
k

)2 ∣∣∣∣Hγ
i

]]
(84)

= P (pγk(i)< δ) (85)

≤ P
(

inf
v∈[0,t]

pγk(U
γ(v), Sγ(v))< δ

)
≤ η, (86)

where (84) follows from Uγ(iγ) and Sγ(iγ) being Hγ
i -measurable, (85) follows from conditional

independence of Iγk (i+ 1) and (Xγ
k (i+ 1)− µγ

k)
2/(σγ

k)
2, and (86) holds for γ sufficiently close to

zero, as established above.

Additionally, we have

E
[
W γ

k (i+1)2I (|W γ
k (i+1)|> ϵ/

√
γ) I (pγk(i)≥ δ)

]
=E

[
I (pγk(i)≥ δ)

pγk(i)
E

[
Iγk (i+1)

(
Xγ

k (i+1)−µγ
k

σγ
k

)2

I (|W γ
k (i+1)|> ϵ/

√
γ)

∣∣∣∣Hγ
i

]]

≤ 1

δ
E

[
E

[(
Xγ

k (i+1)−µγ
k

σγ
k

)2

I (|W γ
k (i+1)|> ϵ/

√
γ)

∣∣∣∣Hγ
i

]]

≤ 1

δ
E

E[∣∣∣∣Xγ
k (i+1)−µγ

k

σγ
k

∣∣∣∣2+α
]2/(2+α)

P
(
|W γ

k (i+1)|> ϵ/
√
γ
∣∣∣Hγ

i

)α/(2+α)

 (87)

≤ C

δ
E
[
P
(
|W γ

k (i+1)|> ϵ/
√
γ
∣∣∣Hγ

i

)α/(2+α)
]
, (88)

where (87) follows from Hölder’s inequality, and (88) follows from (7) in Assumption 1, with

constant C > 0. Furthermore, almost surely,

P
(
|W γ

k (i+1)|> ϵ/
√
γ
∣∣∣Hγ

i

)
≤ γ

ϵ2
1

pγk(i)
E

[
Iγk (i+1)

(
Xγ

k (i+1)−µγ
k

σγ
k

)2 ∣∣∣∣Hγ
i

]
=

γ

ϵ2
.

So, by the bounded convergence theorem, the right side of (88) converges to zero as γ ↓ 0.

Therefore, from (86) and (88), we have

limsup
γ↓0

E
[
W γ

k (i+1)2I (|W γ
k (i+1)|> ϵ/

√
γ)
]
≤ η, (89)

and sending η ↓ 0 yields (83). □

5.2. Proofs for Stochastic ODE Approximation

In this section, we prove Theorem 2 (from Section 3.2), which is an alternative stochastic ODE

representation of the SDE in Theorem 1 (from Section 3.1).
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Proof of Theorem 2.

Weak Convergence to the Stochastic ODE Limit

To show weak convergence to the stochastic ODE limit, we only need to slightly modify the proof of

Theorem 1. We start with the discrete approximation (35)-(36) and (29)-(30) from our derivation

in Section 3.2. We denote the joint processes via (Uγ ,Zγ ,Mγ) = (Uγ
k ,Z

γ
k ,M

γ
k , k ∈ [K]), and recall

that they are processes in D3K [0,∞).

Consider a weakly convergent subsequence of (Uγ ,Zγ), which we will still index by γ for nota-

tional simplicity. Then, jointly (Uγ ,Zγ ,Mγ) ⇒ (U,Z,M), where (as in the proof of Theorem 1)

M is the DK [0,∞) zero process. By Donsker’s Theorem (Chapter 3 of Billingsley (1999)), Z is

standard K-dimensional Brownian motion.

By the continuity of function composition (Theorem 13.2.2 of Whitt (2002)), since the Brownian

motion limit process Z has continuous sample paths and the limit process R must have non-

decreasing sample paths, we have by the Continuous Mapping Theorem,

(Uγ ,Zγ ,Mγ ,Zγ ◦Uγ)⇒ (U,Z,M,Z ◦U). (90)

Define the processes Aγ = (Aγ
k, k ∈ [K]) and A= (Ak, k ∈ [K]), where

Aγ
k(t) = pγk(U

γ(t),Zγ ◦Uγ(t)) (91)

Ak(t) = pk(U(t),Z ◦U(t)). (92)

Since pγk(u, s) → pk(u, s) as γ ↓ 0 uniformly for (u, s) in compact subsets of [0,∞)K × RK , and

pk(u, s) is continuous at all (u, s)∈ [0,∞)K×RK , by the Generalized Continuous Mapping Theorem

(Lemma 6) applied to the processes in (91)-(92), we have from (90),

(Uγ ,Zγ ,Mγ ,Aγ)⇒ (U,Z,M,A). (93)

Additionally, define the processes Ũγ = (Ũγ
k , k ∈ [K]) and Ũ = (Ũk, k ∈ [K]), where

Ũγ
k (t) =

∫ t

0

pγk(U
γ(v),Zγ ◦Uγ(v))dv

Ũk(t) =

∫ t

0

pk(U(v),Z ◦U(v))dv. (94)

Recall that

Uγ
k (t) = γ

⌊t/γ⌋−1∑
i=0

pγk(U
γ(iγ),Zγ ◦Uγ(iγ))+Mγ

k (t).

For each k ∈ [K], because Mγ
k converges weakly to the D[0,∞) zero process and also

sup
t≥0

∣∣∣∣∣γ
⌊t/γ⌋−1∑

i=0

pγk(U
γ(iγ),Zγ ◦Uγ(iγ))− Ũγ

k (t)

∣∣∣∣∣≤ γ,
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we have for any T > 0,

sup
0≤t≤T

∣∣∣Uγ
k (t)− Ũγ

k (t)
∣∣∣ P→ 0. (95)

Thus, by the fact that integration is a continuous functional with respect to the Skorohod metric

(Theorem 11.5.1 of Whitt (2002)) and the Continuous Mapping Theorem, we have from (93),

(Uγ ,Zγ , Ũγ)⇒ (U,Z, Ũ). (96)

Together, (95)-(96) yield

(Uγ ,Zγ ,Uγ)⇒ (U,Z, Ũ),

and recalling the definition of Ũ in (94), we have established weak convergence to a weak limit

point.

So, we have established that each weak limit point of the stochastic ODE pre-limit is an adapted

(pathwise) solution to the stochastic ODE. (The stochastic ODE does not necessarily have a unique

adapted (pathwise) solution since Brownian motion sample paths are not Lipschitz continuous, and

so conventional ODE uniqueness theory does not apply.) We also know that the stochastic ODE

pre-limit and the SDE pre-limit (from Theorem 1) have the same distribution (since the random

table model and the reward stack model of reward feedback are distributionally equivalent), and

as established in Theorem 1, the SDE pre-limit converges weakly to the unique strong solution of

an SDE. Therefore, the stochastic ODE pre-limit must converge to a single weak limit, and that

weak limit is an adapted (pathwise) solution to the stochastic ODE.

Random Time Change Representation

Here we show that the stochastic ODE can be recovered from the SDE through a random time

change. We work with a probability space (Ω,F ,P) supporting a standard Brownian motion B

on RK , with natural filtration FB
t = σ (B(v) : 0≤ v≤ t). We will work with the corresponding

augmented filtration Ft = σ(FB
t ∪L), where L is the collection of all P-null sets. (See Chapter 2.7

of Karatzas and Shreve (1998) for details.) By Theorem 1, there exists a solution (U,S) to the SDE

(25)-(26) on this probability space with respect to the standard Brownian motion B. Writing (26)

in integral form, because the pk functions are bounded,

Sk(t) =

∫ t

0

√
pk(U(v), S(v))dBk(v), k ∈ [K]

are continuous Ft-martingales with quadratic variation processes

⟨Sk⟩t =
∫ t

0

pk(U(v), S(v))dv, k ∈ [K],
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and for k ̸= k′, the cross-variation processes ⟨Sk, Sk′⟩t = 0 since Bk and Bk′ are independent. Note

that integrating (25) (in the Riemann sense) yields ⟨Sk⟩t = Uk(t), k ∈ [K], which are continuous

and strictly increasing processes since the pk functions are bounded and strictly positive. Define

U−1
k (t) = inf{v≥ 0 :Uk(v)≥ t}, k ∈ [K].

Now, we recall that in great generality, continuous martingales can be represented as time-changed

Brownian motions. In particular, by a theorem due to F.B. Knight (see, for example, Proposition

18.8 of Kallenberg (2002) or Theorem 1.10 of Revuz and Yor (1999)), for k ∈ [K], we have that

B̃k(t) := Sk(U
−1
k (t)) are independent standard Brownian motions with respect to the filtration

F B̃
t = σ

(
B̃(u) : 0≤ u≤ t

)
. Thus, we have B̃k(Uk(t)) = Sk(t), and substituting this representation

into the SDE (25), we obtain the stochastic ODE:

Uk(t) =

∫ t

0

pk(U(v), B̃ ◦U(v))dv, k ∈ [K]. (97)

So with respect to the smaller filtration F B̃
t , the SDE solution U(t) satisfies the stochastic ODE

(97), which coincides with (39). □

Appendix A: Proof of Proposition 1

Proof of Proposition 1. Under ϵ-warm-start, we only need to establish the SDE and stochas-

tic ODE approximations on [ϵ,∞). We verify that the sampling probabilities for EF Thompson

samplers have the desired form with pk(u, s) as in (51).

In the SDE case, as before, we use the random table model of reward feedback. At time j +1,

conditional on Hγ
j (as defined in (4)), for each arm k, we sample a value µ̃γ

k(j+1) from the posterior

distribution of µγ
k. Let µ̂

γ
k(j+1) denote the sample mean estimate at time j+1. (For the exponential

family model, the sample mean is the maximum likelihood estimator (MLE) for the mean, and is

used as the centering value for the Gaussian posterior approximation in Proposition 5.) Here, the

Sγ
k and Uγ

k have the expressions from (8)-(9). The probability of playing arm k is given by:

P
(
k= argmax

l∈[K]

µ̃γ
l (j+1)

∣∣Hγ
j

)
= P

(
k= argmax

l∈[K]

{
Sγ
l (jγ)σ

γ
l

Uγ
l (jγ)

+ dγl +
1
√
γ
(µ̃γ

l (j+1)− µ̂γ
l (j+1))

} ∣∣∣∣Uγ(jγ), Sγ(jγ)

)

= P

(
k= argmax

l∈[K]

{
Sγ
l (jγ)σ

γ
l

Uγ
l (jγ)

+ dγl +
σγ
l√

Uγ
l (jγ)

Nl

} ∣∣∣∣Uγ(jγ), Sγ(jγ)

)
+ oP(1) (98)

= pγk(U
γ(jγ), Sγ(jγ))+ oP(1), (99)
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where (98) follows from Proposition 5, with the probability taken over the independent standard

Gaussian variables Nl, and

pγk(u, s) = P

(
k= argmax

l∈[K]

{
slσ

γ
l

ul

+ dγl +
σγ
l√
ul

Nl

})
.

Moreover, with pk(u, s) as in (51), pγk(u, s)→ pk(u, s) uniformly for (u, s) on compact subsets of

[0,∞)K ×RK , with the restriction that uk ≥ ϵqk > 0 for each arm k, due to the initial sampling

with constant, positive probabilities (qk, k ∈ [K]) in the ϵ-warm-start procedure.

This sequence of derivations parallels what we derived in (12)-(14) in Section 3.1. From (99), the

proof of Theorem 1 can be applied to yield the desired SDE approximation in (45)-(48).

The proof in the stochastic ODE case is analogous. We use the reward stack model of reward

feedback, with Zγ
k (U

γ
k ), as defined in (29), instead of Sγ

k . The proof of Theorem 2 can then be

applied to yield the desired stochastic ODE approximation in (49). □

Appendix B: Gaussian Approximations for Posterior Distributions

In this appendix, we consider the same setup as in Section 4.1. Recall that the arm reward distri-

butions are from an exponential family P µ parameterized by mean µ (as expressed in (50)), with

means µ known to belong to a bounded, open interval I. Our goal here is to develop Proposition

5 below, which is a version of the Bernstein-von Mises Theorem. This version establishes weak

convergence of the rescaled posterior distribution to a Gaussian distribution, almost surely as the

sample size n→∞, and uniformly over the possible data-generating distributions P µ, µ ∈ I. The

reason we develop the result uniformly over the possible data-generating distributions is the fol-

lowing. For a time horizon of O(1/γ), the diffusion scaling asymptotic regime of Assumption 1

involves mean parameters µγ
k in a

√
γ-neighborhood of some µ∗. As γ ↓ 0 (and the time horizon goes

to infinity), the mean parameters µγ
k change. So, for a given “large” time horizon, the Gaussian

approximation to the posterior in Proposition 5 should be valid simultaneously for all distributions

P µ corresponding to a range of mean parameters µ; a fixed (not depending on γ) neighborhood of

µ∗ suffices. Below, we first discuss the “uniform almost sure” mode of convergence, and then move

on to the development of Proposition 5.

“Uniform Almost Sure” Convergence

To make sense of the “uniform almost sure” mode of convergence, we first recall an equivalent

characterization of almost sure convergence in Remark 4 below, followed by a precise definition of

the mode of convergence in Definition 4 below. For any particular distribution Q, we use EQ[·] and

PQ(·) to denote expectation and probability taken with respect to Q.
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Remark 4. For a sequence of random variables Y1, Y2, . . . ,

Yn
a.s.→ 0

as n→∞, if and only if for any ϵ > 0,

lim
n→∞

P
(
sup
j≥n

|Yj|> ϵ

)
= 0.

Definition 4. Let Q be a collection of probability distributions and Zi be random variables

defined on the probability spaces (Ω,F ,Q)Q∈Q. We say that the sequence Zi converges almost

surely to zero, uniformly in Q∈Q, if for any ϵ > 0,

lim
n→∞

sup
Q∈Q

PQ

(
sup
j≥n

|Zj|> ϵ

)
= 0.

Next, we state Lemma 4, which is used in the proof of Proposition 5. This result, originally

due to Chung (1951), is a strong law of large numbers that holds uniformly over a collection of

underlying probability distributions.

Lemma 4. Let Q be a collection of probability distributions, and for each Q ∈ Q, let Y,Yi
iid∼ Q.

Suppose the Q-uniform integrability condition,

lim
z→∞

sup
Q∈Q

EQ [|Y −EQ[Y ]| I (|Y −EQ[Y ]|> z)] = 0,

is satisfied. Then, for every ϵ > 0,

lim
m→∞

sup
Q∈Q

PQ

(
sup
n≥m

∣∣∣∣∣ 1n
n∑

i=1

Yi −EQ[Y ]

∣∣∣∣∣> ϵ

)
= 0.

Development of Proposition 5

Before presenting Lemma 5 and then continuing on to Proposition 5, which is the main result

of this appendix, we first formalize the (modest) technical conditions, C1 and C2 below, that are

used to develop these results. It can be easily verified that the exponential family setup detailed in

(50) from Section 4.1 satisfies C1 and C2. Notation-wise, corresponding to the exponential family

P µ, the log-likelihood function is denoted by l(µ,x), and derivatives of l(µ,x) with respect to µ

are denoted by l′(µ,x), l′′(µ,x), etc. For each µ∈ I, let Xµ,Xµ
i

iid∼ P µ.

(C1) For each δ > 0, there is an ϵ > 0 such that for all µ∈ I,

sup
z:|µ−z|≥δ

E[l(z,Xµ)]≤E[l(µ,Xµ)]− ϵ. (100)
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(C2) There exists functions η and κ such that for all x in the support of the base distribution

P (in (50)),

η(x)≥ sup
µ∈I

|l′(µ,x)| (101)

κ(x)≥ sup
µ∈I

|l′′′(µ,x)| . (102)

Moreover, for the cases: f(x) = |x|, f(x) = η(x)+ |l(µ0, x)| for some fixed µ0 ∈ I, and f(x) = κ(x),

lim
y→∞

sup
µ∈I

E [f(Xµ)I (f(Xµ)> y)] = 0. (103)

Applying Theorems 2.7.11 and 2.8.1 of van der Vaart and Wellner (1996) (together with the

mean value theorem), we have the following result.

Lemma 5. Suppose C1 holds together with C2 for the case f(x) = η(x)+ |l(µ0, x)| with some fixed

µ0 ∈ I and η(x) as defined in (101). Then, {l(µ, ·), µ∈ I} is a Glivenko-Cantelli class of functions

uniformly in P µ, µ∈ I, i.e., for any ϵ > 0,

lim
m→∞

sup
µ∈I

P

(
sup
n≥m

sup
z∈I

∣∣∣∣∣ 1n
n∑

i=1

l(z,Xµ
i )−E[l(z,Xµ)]

∣∣∣∣∣> ϵ

)
= 0.

We now state and prove Proposition 5. The proof is adapted from the proof of Theorem 4.2 in

Ghosh et al. (2006). As before, for each µ ∈ I, let Xµ,Xµ
i

iid∼ P µ, with mean µ and corresponding

variance (σµ)2. (Below, we will write all relevant quantities with superscript µ to keep track of the

distribution P µ that we work with.) The sample mean of Xµ
1 , . . . ,X

µ
n is denoted by m̂µ

n. Given n

such samples, we use m̃µ
n to denote a sample from the posterior distribution of the mean µ.

Proposition 5. Suppose the conditions C1 and C2 hold, with bounded, open interval I ⊂R. Let

ν0 be a bounded prior density with support contained in I, that is also continuous and positive on a

bounded, open sub-interval I ′ ⊂I. Then, conditional on the data Xµ
i

iid∼ P µ, the centered and scaled

posterior density y 7→ νn(y |Xµ
1 , . . . ,X

µ
n) for

√
n(m̃µ

n − m̂µ
n) satisfies:

lim
n→∞

∫
R

∣∣∣∣νn(y |Xµ
1 , . . . ,X

µ
n)−

1√
2πσµ

exp

(
− 1

2(σµ)2
y2

)∣∣∣∣dy= 0 (104)

almost surely, uniformly in the underlying distribution P µ for µ∈ I ′.

Proof of Proposition 5. The posterior density can be expressed as

νn(y |Xµ
1 , . . . ,X

µ
n) = (Cµ

n)
−1ν0(m̂

µ
n + y/

√
n) exp

(
Lµ

n(m̂
µ
n + y/

√
n)−Lµ

n(m̂
µ
n)
)
, (105)

with normalization factor (Cµ
n)

−1 and

Lµ
n(z) =

n∑
i=1

l(z,Xµ
i ).
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Consider the following difference between unnormalized densities.

Dµ
n(y) = ν0(m̂

µ
n + y/

√
n) exp

(
Lµ

n(m̂
µ
n + y/

√
n)−Lµ

n(m̂
µ
n)
)
− ν0(µ) exp

(
− 1

2(σµ)2
y2

)
(106)

To show (104), it suffices to show that a.s. uniformly in µ∈ I ′,

lim
n→∞

∫
R
|Dµ

n(y)|dy= 0. (107)

Indeed, if (107) holds, we must also have

lim
n→∞

Cµ
n = ν0(µ)

√
2πσµ, (108)

a.s. uniformly in µ∈ I ′. So, we would have∫
R

∣∣∣∣νn(y |Xµ
1 , . . . ,X

µ
n)−

1√
2πσµ

exp

(
− 1

2(σµ)2
y2

)∣∣∣∣dy
≤ (Cµ

n)
−1

∫
R
|Dµ

n(y)|dy+
∣∣∣∣(Cµ

n)
−1ν0(µ)−

1√
2πσµ

∣∣∣∣ ∫
R
exp

(
− 1

2(σµ)2
y2

)
dy. (109)

Applying (107) and (108) to (109) would then lead to the desired conclusion in (104).

To show (107), we split the integral into two pieces on An = {y : |y|> β
√
n} and Ac

n = {y : |y| ≤

β
√
n}, with β > 0 to be specified later in the proof. In the first case on An,∫

An

|Dµ
n(y)|dy≤

∫
An

ν0(m̂
µ
n + y/

√
n) exp

(
Lµ

n(m̂
µ
n + y/

√
n)−Lµ

n(m̂
µ
n)
)
dy

+

∫
An

ν0(µ) exp

(
− 1

2(σµ)2
y2

)
dy. (110)

By the boundedness of ν0(µ) and (σµ)2 for µ ∈ I ′, the second integral on the right side of (110)

goes to zero as n→∞, uniformly in µ ∈ I ′. For the first integral on the right side of (110), from

condition C2 with f(x) = |x| and Lemma 4, it follows that

m̂µ
n −µ→ 0 (111)

as n→∞, a.s. uniformly in µ ∈ I ′. This along with Lemma 5 implies that there exists ϵ > 0 such

that

sup
y∈An, (m̂

µ
n+y/

√
n)∈I

1

n

(
Lµ

n(m̂
µ
n + y/

√
n)−Lµ

n(m̂
µ
n)
)
≤−ϵ, (112)

for sufficiently large n, a.s. uniformly in µ ∈ I ′. (For the first integral on the right side of (110),

we only need to consider y such that (m̂µ
n + y/

√
n) ∈ I, since the prior density ν0 has support

contained in I.) Therefore, using (112), the first integral in (110) also goes to zero as n→∞, a.s.

uniformly in µ∈ I ′.
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For the second case on Ac
n, we analyze ∫

Ac
n

|Dµ
n(y)|dy. (113)

We expand Lµ
n in a Taylor series about the MLE m̂µ

n, noting that by the definition of the MLE,

(Lµ
n)

′(m̂µ
n) = 0. We have

Lµ
n(m̂

µ
n + y/

√
n)−Lµ

n(m̂
µ
n) =−1

2

1

n
(Lµ

n)
′′(m̂µ

n)y
2 + rµn(y)

=−1

2
(θ′′(m̂µ

n)m̂
µ
n −Λ′′(m̂µ

n))y
2 + rµn(y), (114)

using the fact that l′′(z,x) = θ′′(z) · x−Λ′′(z) (recall the definitions of θ(z) and Λ(z) from (50)),

with

rµn(y) =
1

6

(
y√
n

)3

(Lµ
n)

′′′(mµ
n,y),

where mµ
n,y is a point in between m̂µ

n and m̂µ
n + y/

√
n. Using condition C2 with f(x) = κ(x) and

Lemma 4, there exists δ > 0 such that for sufficiently large n, a.s. uniformly in µ∈ I ′,

|rµn(y)| ≤
1

6

y3

√
n

1

n

n∑
i=1

κ(Xµ
i )≤

1

6

y3

√
n
(E [κ(Xµ)]+ δ) . (115)

For y ∈Ac
n, (115) can be re-expressed as

|rµn(y)| ≤
1

6
βy2 (E [κ(Xµ)]+ δ) . (116)

For the first term on the right side of (114), we have

lim
n→∞

θ′′(m̂µ
n)m̂

µ
n −Λ′′(m̂µ

n) = θ′′(µ)µ−Λ′′(µ) =
1

(σµ)2
(117)

a.s. uniformly in µ∈ I ′. In (117), the first equality follows from the uniform continuity of θ′′ and Λ′′

on I, together with the convergence result in (111). The second equality is from a standard identity

relating Fisher information and the variance (σµ)2 of the Xµ
i . Now, defining c0 := infw∈I′ 1/(σw)2

and recognizing that c0 > 0, we can choose β > 0 to satisfy:

−1

2
c0 +

1

6
β (E [κ(Xµ)]+ δ) =−1

4
c0.

Then, using (116) and (117), we have from (114) that

sup
y∈Ac

n

exp (Lµ
n(m̂

µ
n + y/

√
n)−Lµ

n(m̂
µ
n))

exp(−c0y2/4)
≤ 1 (118)

for sufficient large n, a.s. uniformly in µ∈ I ′. Thus, on Ac
n, D

µ
n(y) (as defined in (106)) is dominated

by an integrable function for sufficiently large n, a.s. uniformly in µ∈ I ′. Furthermore, from (115)

we have for any fixed y that rµn(y)→ 0 as n→∞, a.s. uniformly in µ ∈ I ′. This, together with

(111), (114) and (117), we have for any fixed y that Dµ
n(y)→ 0 as n→∞, a.s. uniformly in µ∈ I ′.

Then, by the dominated convergence theorem, the quantity in (113) converges to zero as n→∞,

a.s. uniformly in µ∈ I ′. □
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Appendix C: Gaussian Approximations for the Bootstrap

In Proposition 6 below, we develop a Gaussian approximation for bootstrapping the sample mean.

Recall that here, we allow for arbitrary reward distributions P µ (not necessarily from an exponential

family), with means µ∈ I and corresponding variances (σµ)2, where I ⊂R is an open interval. The

only requirement on the P µ is that the condition in (119) is satisfied. As before, for each µ ∈ I,

let Xµ,Xµ
i

iid∼ P µ. We use m̂µ
n and (σ̂µ

n)
2 to denote the sample mean and variance computed using

n samples Xµ
1 , . . . ,X

µ
n . Also, we use m̂∗µ

n to denote a bootstrap of the sample mean m̂µ
n computed

using n re-samples with replacement. Proposition 6 holds almost surely and uniformly over data-

generating distributions P µ, µ ∈ I. Recall that a precise description of this mode of convergence

was given in Remark 4 and Definition 4 in Appendix C.

Proposition 6. Suppose that

lim
y→∞

sup
µ∈I

E
[
(Xµ)2I

(
(Xµ)2 > y

)]
= 0. (119)

Then,

lim
n→∞

sup
x∈R

∣∣∣P (√n (m̂∗µ
n − m̂µ

n)≤ x |Xµ
1 , . . . ,X

µ
n

)
−Φ

( x

σµ

)∣∣∣= 0, (120)

almost surely, uniformly in µ∈ I.

Proof of Proposition 6. We check the conditions to be able to apply Proposition 1.3.1 part (ii)

in Politis et al. (1999). First, because the class of functions {I (· ≤ x) , x ∈R} is a VC class and is

uniformly bounded, by Theorem 2.8.1 of van der Vaart and Wellner (1996), it is a Glivenko-Cantelli

class of functions, uniformly in P µ, µ ∈ I. Also, from (119) and Lemma 4, we have m̂µ
n → µ and

σ̂µ
n → σµ as n→∞, almost surely, uniformly in µ. The desired result (120) then follows. □

Appendix D: Weak Convergence Technical Lemmas

Lemma 6 (Generalized Continuous Mapping Theorem). Let f and fn, n ≥ 1, be measur-

able functions that map from the metric space (S1, r1) to the separable metric space (S2, r2). Let E

be the set of x∈ S1 such that fn(xn)→ f(x) fails for some sequence xn, n≥ 1, with xn → x in S1.

If ξn ⇒ ξ in (S1, r1) and P (ξ ∈E) = 0, then fn(ξn)⇒ g(ξ) in (S2, r2). (See Theorem 3.4.4 of Whitt

(2002).)

Lemma 7 (Tightness of Multi-dimensional Processes). A sequence of process ξn =

(ξn1 , . . . , ξ
n
d ) is tight in Dd[0,∞) if and only if each ξnj and each ξnj + ξnk are tight in D[0,∞), for

all 1≤ j, k≤ d. (See Problem 22 of Chapter 3 of Ethier and Kurtz (1986).)
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Lemma 8 (Simple Sufficient Conditions for Tightness). A sequence of processes ξn in

D[0,∞) adapted to filtrations (Fn
t , t≥ 0) is tight if, for each T > 0,

lim
a→∞

sup
n

P
(

sup
0≤t≤T

|ξn(t)|>a

)
= 0, (T1)

and there exists a collection of non-negative random variables {An
δ (T ), n≥ 1, δ > 0} such that

E
[
(ξn(t+u)− ξn(t))

2 | Fn
t

]
≤E [An

δ (T ) | Fn
t ] (T2)

almost surely for 0≤ t≤ T and 0≤ u≤ δ, and

lim
δ↓0

limsup
n→∞

E [An
δ (T )] = 0. (T3)

(See Lemma 3.11 from Whitt (2007), which is adapted from Ethier and Kurtz (1986).)

Lemma 9 (Martingale Functional Central Limit Theorem). For each n, let Y n(i) ∈Rm be

a martingale difference sequence adapted to the filtration Fn
i for i= 1,2, . . . . Suppose for any t > 0,

the following conditions (M1) and (M2) hold as n→∞.

There exists a symmetric positive-definite matrix Σ such that

1

n

⌊nt⌋∑
i=1

E
[
Y n(i)Y n(i)⊤ | Fn

i−1

] P→ tΣ. (M1)

For any ϵ > 0 and each component k= 1, . . . ,m,

1

n

⌊nt⌋∑
i=1

E
[
Y n
k (i)2I

(
|Y n

k (i)|> ϵ
√
n
)
| Fn

i−1

] P→ 0. (M2)

Then,

1√
n

⌊n·⌋∑
i=1

Y n(i)⇒B(·)

in D[0,∞), where B is m-dimensional Brownian motion with covariance matrix Σ.
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Lattimore T, Szepesvári C (2020) Bandit Algorithms (Cambridge University Press).

Osband I, Van Roy B (2015) Bootstrapped Thompson Sampling and Deep Exploration. arXiv:1507.00300 .

Perchet V, Rigollet P, Chassang S, Snowberg E (2016) Batched Bandit Problems. The Annals of Statistics

44(2):660–681.

Politis D, Romano J, Wolf M (1999) Subsampling (Springer).

Revuz D, Yor M (1999) Continuous Martingales and Brownian Motion (Springer).

Russo D, Van Roy B (2014) Learning to Optimize via Posterior Sampling. Mathematics of Operations

Research 39(4):1221–1243.

Russo D, Van Roy B (2016) An Information-Theoretic Analysis of Thompson Sampling. Journal of Machine

Learning Research 17(68):1–30.

Russo D, Van Roy B, Kazerouni A, Osband I, Wen Z (2019) A Tutorial on Thompson Sampling (Foundations

and Trends in Machine Learning).

Stroock D, Varadhan S (1979) Multidimensional Diffusion Processes (Springer).

Tang L, Jiang Y, Li L, Zeng C, Li T (2015) Personalized Recommendation via Parameter-free Contextual

Bandits. International ACM SIGIR Conference on Research and Development in Information Retrieval

.

Thompson W (1933) On the Likelihood that One Unknown Probability Exceeds Another in View of the

Evidence of Two Samples. Biometrika 25(3):285–294.

van der Vaart A, Wellner J (1996) Weak Convergence and Empirical Processes (Springer).

Vaswani S, Kveton B, Wen Z, Rao A, Schmidt M, Abbasi-Yadkori Y (2018) New Insights into Bootstrapping

for Bandits. arXiv:1805.09793 .

Whitt W (2002) Stochastic-Process Limits (Springer).

Whitt W (2007) Proofs of the Martingale FCLT. Probability Surveys 4:268–302.


	Introduction
	Related Work

	Model and Preliminaries
	Derivations of Diffusion Approximations
	SDE Approximation
	Stochastic ODE Approximation
	Additional Approximations

	Further Insights from Diffusion Approximations
	Approximations for Exponential Family Thompson Samplers
	Approximations for Bootstrap Sampler
	Model Mis-specification
	Batched Updates

	Proofs for Main Results
	Proofs for SDE Approximation
	Proofs for Stochastic ODE Approximation

	Proof of Proposition 1
	Gaussian Approximations for Posterior Distributions
	Gaussian Approximations for the Bootstrap
	Weak Convergence Technical Lemmas

